Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>2</td>
</tr>
<tr>
<td>Safety Information</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>Presentation</td>
<td>9</td>
</tr>
<tr>
<td>Instruments and Controls</td>
<td>11</td>
</tr>
<tr>
<td>Starting</td>
<td>22</td>
</tr>
<tr>
<td>Operation</td>
<td>26</td>
</tr>
<tr>
<td>Engine Shutdown</td>
<td>28</td>
</tr>
<tr>
<td>Fault Handling</td>
<td>30</td>
</tr>
<tr>
<td>Fault Code Register</td>
<td>36</td>
</tr>
<tr>
<td>Maintenance Schedule</td>
<td>39</td>
</tr>
<tr>
<td>Maintenance</td>
<td>41</td>
</tr>
<tr>
<td>Storage</td>
<td>67</td>
</tr>
<tr>
<td>Technical Data</td>
<td>69</td>
</tr>
<tr>
<td>Alphabetical index</td>
<td>77</td>
</tr>
</tbody>
</table>
Foreword

Volvo Penta engines are used all over the world. They are used in all possible operating conditions. This is not a coincidence. After 100 years as an engine manufacturer the Volvo Penta name has become a symbol of reliability, technical innovation, top of the range performance and long service life. We also believe that this is what you demand and expect of your Volvo Penta engine.

We would like you to read this operator’s manual thoroughly and consider the advice we give on running and maintenance. Please pay attention to the safety instructions contained in the manual.

As owner of a Volvo Penta engine, we would also like to welcome you to a worldwide network of dealers and service workshops to assist you with technical advice, service requirements and replacement parts. Please contact your nearest authorized Volvo Penta dealer for assistance.

You will find your closest dealer at our home page on the Internet www.volvopenta.com - amongst other useful information about your Volvo Penta engine - we invite you to visit!
Safety Information

Read the Operators Manual through very carefully before you start the engine or do any maintenance or service. It has to do with your safety; an incorrect operation can lead to personal injury and damage to products or property. This chapter describes how safety precaution is presented in the Operators Manual and on the product. It also gives you an introduction to the basic safety rules for using and looking after the engine. If there is still something which is unclear or if you feel unsure about it, please contact your Volvo Penta dealer for assistance.

NOTICE! Check that you have received the correct operator’s manual before you read on. If not, please contact your Volvo Penta dealer.

⚠️ This symbol is used in the Operators Manual and on the product, to call your attention to the fact that this is safety information. Always read such information very carefully.

Safety texts in the Operators Manual have the following order of priority:

⚠️ **DANGER!**
Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

⚠️ **WARNING!**
Indicates a hazardous situation which, if not avoided, could result in death or serious personal injury.

⚠️ **CAUTION!**
Indicates a hazardous situation which, if not avoided, could result in minor or moderate personal injury.

IMPORTANT!
Indicates a situation which, if not avoided, could result in property damage.

⚠️ **NOTICE!** Used to draw your attention to important information that will facilitate the work or operation in progress.

🔍 This symbol is used on our products in some cases and refers to important information in the Operators Manual. Make sure that warning and information symbols on the engine are clearly visible and legible. Replace symbols which have been damaged or painted over.
Safety rules for operation and maintenance

Daily checks
Make it a habit to give the engine and engine bay a visual check before starting **(before the engine is started)** and after operation **(once the engine has stopped)**. This helps you to quickly discover whether any leakage of fuel, coolant, oil or any other abnormal event has happened, or is about to happen.

Starting lock
If the instrument panel does not have a key switch, the engine room must be lockable, to prevent unauthorized persons from starting the engine. Alternatively, a lockable main switch can be used.

Carbon monoxide poisoning
Only start the engine in a well ventilated area. When operated in a confined space, exhaust fumes and crankcase gases must be ventilated.

Hot surfaces and fluids
A hot engine always increases the risk for burns. Be on your guard against hot surfaces: the exhaust manifold, turbocharger, oil pan, charge air pipe, starting heater, hot coolant and hot lubricating oil in pipes, hoses etc.

Cooling System
Avoid opening the coolant filling cap when the engine is hot. Steam or hot coolant can spray out and cause scalding, at the same time as the pressure built up is lost.
If the filler cap, coolant hose etc., still has to be opened or removed when the engine is hot, undo the filler cap slowly and carefully, to let the pressure out before removing the filler cap completely and starting work. Note that the coolant can still be hot and cause scalding.

Fuel filling
There is always a risk of fire and explosion during fuel filling. Smoking is forbidden, and the engine should be stopped.
Never overfill the tank. Shut the tank cap securely.
Only use the fuel recommended in the instruction book. The wrong grade of fuel can cause serious malfunctions, power loss or stop the engine.

Fuel and lubrication oils
Always protect your hands when searching for leaks. Fluids which leak under pressure can force their way into body tissue and cause severe injury. There is a risk of blood poisoning (septicemia).
Only use the fuel recommended in the Operators Manual. The wrong grade of fuel can cause malfunctions or stop the engine. In a diesel engine, it can also cause the injection pump to seize and the engine will over-rev, entailing a strong risk of personal injury and machinery damage.
Always cover the alternator if it is located beneath the fuel filters. Fuel spillage can damage the alternator. Always change the oil, oil filter and fuel filter at the specified intervals.

Operation
The engine must not be operated in environments which contain explosive media since none of the electrical and mechanical components are explosion proof.
Going close to a running engine is a safety risk. Hair, fingers, loose clothes, or dropped tools can catch on rotating components and cause severe injury.
When engines are supplied without touch guards, all rotating components and hot surfaces must be protected after installation in their application, if necessary for personal safety.
Care and maintenance
Knowledge
The Operators Manual contains instructions for doing the most common service and maintenance tasks in a safe and correct manner. Read them carefully before starting work. Literature for more major tasks is available from your Volvo Penta dealer. Never do a job if you are not entirely sure about how to do it. Please contact your Volvo Penta dealer and ask for assistance instead.

Before starting
Re-install all guards which have been removed during service work, before re-starting the engine. Make sure that there are no tools or other objects left behind on the engine. Never start a turbocharged engine without the air filter in place. The rotating compressor turbine in the turbocharger can cause severe injury. There is also a risk that foreign bodies could be sucked in and cause damage to the machinery.

Stopping the engine
Stop the engine before opening or removing the engine hatch/hood. Service and maintenance work should be done with the engine stopped unless otherwise specified. Prevent the engine from being started by pulling out the starter key and disconnect the power with the main switch. Lock them in the “Off” position. If the instrument panel does not have a key switch, remove the system voltage with the main switch. Fix a notice by the operator position to say that work is in progress. Working with, or approaching a running engine is a safety risk. Hair, fingers, loose clothes, or dropped tools can catch on rotating components and cause severe injury. Volvo Penta recommends that all service work which requires the engine to be running should be done by an authorized Volvo Penta workshop.

Lifting the engine
The lifting eyes fitted on the engine should be used for lifting. Always check that the lifting devices are in good condition and that they have the correct capacity for the lift (engine weight together with auxiliaries, if fitted). The engine should be lifted with an adjustable lifting boom for safe handling. All chains or cables should be parallel to each other and should be as square as possible to the top of the engine. Please note that auxiliary equipment installed on the engine could change its center of gravity. Special lifting devices may then be needed to obtain the correct balance and safe handling. Never carry out work on an engine that is only suspended in a hoist.

Fire and explosion
Fuel and lubrication oil
All fuel, most lubricants and many chemicals are flammable. Always read and observe the advice on the packages. Work on the fuel system must be done with the engine cold. Fuel leakage and spills on hot surfaces or electrical components can cause fires. Store oil and fuel soaked rags and other flammable material in a fireproof manner. Oil soaked rags can self-ignite in certain circumstances. Never smoke when filling fuel, lubrication oil or when close to fuel filling stations or the engine bay.

Batteries
Batteries contain and give off an explosive gas, especially when charged. This gas is very flammable and highly explosive. Smoking, open flames or sparks must never occur in or near to batteries or the battery locker. Incorrect connection of a battery cable or start cable can cause a spark which can be sufficient, in its turn, to make the battery explode.

Spare parts
Components in fuel systems and electrical systems on Volvo Penta engines are designed and manufactured to minimize the risk of explosions and fire, in accordance with applicable legal requirements. The use of spare parts not approved by Volvo Penta can cause an explosion or fire.

Start spray
Never use start spray or similar preparations to help in starting an engine with air pre-heating (glow plugs / starting heater). They may cause an explosion in the inlet manifold. Danger of personal injury.
Electrical System

Disconnect the power
Before any work is done on the electrical system, the engine must be stopped and the power removed by switching off the main switch(es). Any external power supply for engine heaters, battery chargers or other auxiliary equipment connected to the engine must be disconnected.

Batteries
Batteries contain a highly corrosive electrolyte. Protect your eyes, skin and clothes during charging and other handling of batteries. Always use protective goggles and gloves. If acid comes into contact with your skin, wash at once with soap and a lot of water. If you get battery acid in your eyes, flush at once with a lot of cold water, and get medical assistance at once.

Electric welding
Remove the positive and negative cables from the batteries. Then disconnect all cables connected to the alternator. Disconnect both connectors from the engine control module.
Always connect the welder earth clamp to the component to be welded, and as close as possible to the weld site. The clamp must never be connected to the engine or in such a way that current can pass through a bearing.
When welding is completed: Always connect the cables to the alternator and engine control unit connector before reconnecting the battery cables.
Introduction

The Operator's Manual contains the information required for the correct, safe operation and maintenance of your Volvo Penta engine. We recommend therefore that you read the manual carefully and learn to handle the engine and other equipment in a safe manner before starting the engine.

The Operator's Manual describes the engine and equipment sold by Volvo Penta. The specifications, design information and illustrations used in the Operator's Manual are not definitive. We reserve the right to make changes without prior notice. Differences in appearance and function of the controls and instruments may occur in certain variants. In such cases, refer to the Operator's Manuals for the applications concerned.

When ordering service or spares, always specify the engine and transmission identification number. Refer to Technical Data page 75.

Warranty

Your new Volvo Penta industrial engine is covered by a limited warranty, according to the conditions and instructions compiled in the Warranty and Service Book. Note that AB Volvo Penta's liability is limited to that which is described in the Warranty and Service Book. Read it carefully, as soon as possible after delivery. It contains important information about the warranty card, service intervals and maintenance that the owner must be aware of, check and perform, otherwise AB Volvo Penta may disclaim its warranty obligations in part or in full.

Contact your Volvo Penta dealer if you have not received a Warranty and Service book, or a customer copy of the warranty card.

Breaking in

The engine must be broken in during its first 10 operating hours, as follows:

Run the engine in normal operations. However, full load may not be applied other than for short periods. Never run the engine for long stretches at constant speeds during this period. Higher oil consumption is normal during the first 100-200 hours of operation. For this reason, check the oil level more frequently than the normal recommendation. When an disengageable clutch is installed, it should be checked more carefully during the first days. Adjustments may be necessary to compensate bedding-in of the friction plates.

Maintenance and replacement parts

Volvo Penta engines are designed for maximum reliability and long life. They are not only built to withstand a demanding environment, but also to have the smallest possible environmental impact. These qualities will be maintained through regular servicing and the use of genuine Volvo Penta replacement parts or replacement parts approved by Volvo Penta. Volvo Penta has a world-wide network of authorized dealers. They are Volvo Penta product specialists, and have the accessories, genuine parts, test equipment and special tools needed for high quality service and repair work.

Always observe the maintenance intervals in the manual, and remember to note the engine/transmission identification number when you order service and spare parts.

Fuel, oils and coolant

Only use fuel and oils of the grades recommended in the Operator's Manual. Other grades may cause operational malfunctions, increased fuel consumption and over time even shorten the life of the engine. Always change the oil, oil filter and fuel filter at the specified intervals.

Future warranty claims related to the engine and accessories may be declined if an unsuitable coolant has been used, or if the instructions for coolant mixture have not been followed.
Environmental care

All of us like to live in a clean, healthy environment, where we can breathe clean air, see healthy trees, have clean water in lakes and seas, and enjoy sunlight without fearing for our health. Unfortunately, this cannot be taken for granted these days but it is something we all must work to achieve.

Volvo Penta has special responsibility as an engine manufacturer, and for this reason environmental care is a natural cornerstone of our product development. Volvo Penta currently has a broad engine program in which great progress has been made in reducing exhaust emissions, fuel consumption and engine noise etc.

We hope that you will be keen to preserve these qualities. Always follow the directions in the Operator’s Manual about fuel grades, operation and maintenance, to avoid unnecessary environmental effects. Contact your Volvo Penta dealer if you notice any changes such as increased fuel consumption or increased exhaust smoke.

Remember always to hand in environmentally hazardous waste such as drained oil, coolant, old batteries, etc. for treatment at a recycling facility.

Our united efforts can make a valuable contribution to the environment.

Certified engines

If you own an emission-certified engine used in an area where exhaust emissions are regulated by law, it is important to be aware of the following:

Certification means that an engine type has been checked and approved by the relevant authority. The engine manufacturer guarantees that all engines of the same type conforms to the certified engine. This places special demands on the care and maintenance you provide your engine in that

- the maintenance and service intervals recommended by Volvo Penta must be complied with.
- Only genuine Volvo Penta replacement parts may be used.
- Service on injection pumps, pump settings and injectors must always be carried out by an authorized Volvo Penta workshop.
- The engine must not be converted or modified, except with accessories and service kits that Volvo Penta has developed for the engine.
- No installation changes to the exhaust pipe and engine air inlet ducts may be made.
- Any warranty seals may be broken only by authorized persons.

The general instructions in the Operator’s Manual concerning operation, service and maintenance apply.

NOTICE! Late or inadequate maintenance/service or the use of spare parts not approved by Volvo Penta will invalidate AB Volvo Penta’s responsibility for the engine specification being in accordance with the certified variant.

Damages and/or costs arising from this will not be compensated by Volvo Penta.
This Operator's Manual contains industrial engines TAD1640GE, TAD1641GE, TAD1642GE, TWD1643GE, TAD1650GE, TAD1651GE, TAD1640VE-B, TAD1641VE, TAD41VE-B, TAD1642VE, TAD1642VE-B, TAD1643VE and TAD1650VE.

TAD1650GE and TAD1651GE have internal EGR (Exhaust Gas Recirculation).

These are in-line, directly injected, 6-cylinder industrial diesel engines. All engines are equipped with electronically controlled fuel management (EMS), turbocharger, charge air cooler, thermostatically controlled cooling systems and electronic speed control.
EMS (Engine Management System)

EMS (Engine Management System) is an electronic system with CAN communication (Controller Area Network) for diesel engine control. The system has been developed by Volvo Penta and includes fuel control and diagnostic function.

Input signals
The control module receives input signals about the engines operating conditions and other things from the following components:

- coolant temperature sensor
- charge pressure/charge temperature sensor
- crankcase pressure sensor
- position sensor, camshaft
- speed sensor, flywheel
- coolant level sensor
- oil level and temperature sensor
- oil pressure sensor
- fuel pressure sensor
- water in fuel indicator
- exhaust temperature sensor (TWD1643GE)

Output signals
Based on the input signals the control module controls the following components:

- unit injectors
- starter motor
- main relay
- pre-heating relay
- wastegate (TWD1643GE, TAD1650VE)
- cold start valve (TWD1643GE)
- valve mechanism, internal EGR (TAD1650VE, TAD1650/51GE)

Information from the sensors provides exact information about current operation conditions and allows the processor in the control unit to calculate the correct fuel injection volume and timing, check engine status etc.

Diagnostic function
The task of the diagnostic function is to discover and localize any malfunctions in the EMS system, to protect the engine and to ensure operation in the event of serious malfunction.

If a malfunction is discovered, this is announced by warning lamps, a flashing diagnostic lamp or in plain language on the instrument panel, depending on the equipment used. If a fault code is obtained as a flashing code or in plain language, this is used for guidance in any fault tracing. Fault codes can also be read by Volvo’s VODIA tool at authorized Volvo Penta workshops.

If there is a serious malfunction, the engine will be shut down altogether, or the control unit will reduce the power delivered (depending on application). Once again, a fault code is set for guidance in any fault tracing.

Fuel control
The engine fuel requirement is analyzed up to 100 times per second. The amount of fuel injected into the engine and the injection advance are fully electronically controlled, via fuel valves in the unit injectors. This means that the engine always receives the correct volume of fuel in all operating conditions, which offers lower fuel consumption, minimal exhaust emissions etc.
Instruments and Controls

DCU (Display Control Unit)

The DCU control panel is available as an optional accessory for the EMS (Engine Management System) electronic control system. The DCU is a digital instrument panel which communicates with the engine control unit. The DCU has several functions, such as engine control, monitoring, diagnostics, and parameter setting.

The menus in the DCU system can be used to check, and in some cases to set, a number of different functions in the EMS system.

NOTICE! Settings and what engine data that appears in the display may vary depending on installation and engine model.

NOTICE! The menus and illustrations shown here are the English version. The language can be changed, however; refer to the Setup menu.

Start
When the DCU panel is started, the “Engine Data” menu is displayed; press “ESC” to come to the main menu.

1 LED display
2 START. Starts the engine
3 SPEED -. Reduces engine rpm
4 SPEED +. Increases engine rpm
5 STOP. Stops the engine
6 ON/OFF. Starts and stops the system
7 Scroll downwards in menus
8 SEL. Selects in menus
9 Scroll upwards in menus
10 ESC. Return to previous menu selection
Menus
There are several sub-menus under each main menu. There is not space for all the menu choices on the display. To scroll through the menus, use the 7 and 9 buttons on the display. Press the SEL button 8 to make a selection. Refer to the illustration on the previous page.

NOTICE! The Setup menu can be used to select the language that you want to use on the display.

Main menu

- **Engine data**, current engine data
- **Preheat**, manual activation of pre-heating. Must be activated with temperatures below 0°C (32°F)
- **Governor mode**, activation of droop
- **Diagnostics**, shows fault codes as text
- **Trip reset**, resets trip data
- **Setup**, parameter setting
- **Information**, shows the currently applicable hard/software, data sets and engine identification for the engine and DCU data

Engine data
shows relevant engine data.

- Engine speed, can be controlled with the SPEED+ and SPEED− buttons (rpm)
- Charge pressure (kPa)
- Coolant temperature (°C)
- Charge air temperature (°C)
- Oil pressure (kPa)
- Oil temperature (°C)
- Engine hours (h)
- Battery voltage (V)
- Fuel consumption (l/h)
- Instantaneous fuel consumption (trip fuel) (l)
Preheat
manual activation of pre-heating. When it is activated, the EMS system senses at start-up if pre-heating is needed. For automatic pre-heating, refer to the Setup / Preheat on ignition menu.

NOTICE! Must be activated with temperatures below 0°C (32°F).

The pre-heating time is adjusted to suit the engine temperature, and can last for up to 50 seconds both before and after starting. Refer also to Starting procedure EMS 2.

- Press SEL, the text Preheat requested will be shown
- The display automatically returns to the Engine Data menu.

Governor mode
activates/shuts off droop. To set the droop level, refer to the Setup / Governor gradient or Governor droop menu.

- Select Isochronous mode or Droop mode with the SEL button.

Diagnostics
shows the error list containing the 10 latest active and inactive faults. The fault codes are shown as text on the display.

- Scroll through the fault list with the arrow keys.

Trip Data reset
resets trip data, such as fuel consumption.

- Press the SEL button to reset trip data
Setup

Parameter setting in the engine’s control systems. Different menus appear under Customer parameter, depending on whether Versatile or Gen set has been selected from Set application. See below.

The parameters that can be set/selected (choice is made with the SEL button) are:

- **Set application**, setting Versatile or Gen set. Depending on the selection made here, different menus will appear under Customer parameter.
- **Unit**, setting of units (metric or US imperial).
- **Language**, setting the language used on the display. Choose between English, French, German and Spanish.
- **Stop energized to**, setting of external stop input. Activated by Stop or Run. Stop: The stop input must be connected to voltage to stop the engine. Run: The stop input must be connected to voltage to run the engine.
- **Customer parameter**, setting alarm limits. Refer to Customer parameter / Versatile and Customer parameter / Gen set.
- **Throttle input setting**, setting of engine-speed control and voltage limits. Refer to Throttle input setting.
- **Display setting**, setting the display. Refer to Display setting.

Customer parameter / Versatile

- **Idle engine speed** - setting idle speed.
- **Preheat on ignition** - activation of automatic preheating. The engine control system senses if preheating is needed and activates it directly at switch-on.
- **Governor gradient (Nm/rpm)** - setting of droop level, when activated. For activation, refer to Governor droop in the main menu.
- **Oil temp warning limit (°C)** - setting alarm limit for oil temperature.
- **Coolant temp warning limit (°C)** - setting alarm limit for coolant temperature.
Customer parameter / Gen set

- **Primary engine speed** - selection of engine rpm, 1500 or 1800 rpm.
- **Preheat on ignition** - activation of automatic pre-heating. The engine control system senses if pre-heating is needed and activates it directly at switch-on.
- **Governor droop (%)** - setting of droop level, when activated. For activation, refer to “Governor droop” in the main menu.
- **Overspeed limit (%)** - setting of limit for overspeed alarm, % of set engine rpm.
- **Overspeed shutdown** - activation of engine shutdown with overspeed alarm. Refer to “Overspeed limit” to activate the alarm limit for the excess rpm alarm.
- **Oil temp warning limit (°C)** - setting alarm limit for oil temperature.
- **Coolant temp limit (°C)** - setting alarm limit for coolant temperature.

Throttle input setting

rpm control setting (throttle operation).

- **Set throttle mode** - OFF - engine rpm is controlled via the DCU panel.
- **Set idle voltage (V)** - idle voltage level setting.
- **Set max voltage (V)** - full throttle voltage level setting.
Display setting

settings for the display. Adjustment is made with the 7 and 9 buttons; see DCU panel illustration.

- **Set contrast (%)** - contrast setting.
- **Set backlight time (sec)** - time setting (in seconds) for display backlighting on, lighting is then shut off if the panel is not used.
- **Set backlight brightness** - display backlighting brightness setting.

Information

shows the data for the engine and DCU.

- **Engine hardware Id** - engine control unit part number.
- **Engine software Id** - engine control unit software part number.
- **Engine dataset1 Id** - engine data set 1 part number.
- **Engine dataset2 Id** - engine data set 2 part number.
- **Vehicle Id** - chassis number.
- **DCU hardware Id** - DCU part number.
- **DCU software Id** - DCU software part number.
- **DCU dataset1 Id** - DCU data set 1 part number.
- **DCU dataset2 Id** - DCU data set 2 part number.

<table>
<thead>
<tr>
<th>Setup(Display)</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Setup(Display)]</td>
</tr>
<tr>
<td>◀ Set contrast</td>
</tr>
<tr>
<td>◀ Set backlighttime</td>
</tr>
<tr>
<td>◀ Set backlight brightness</td>
</tr>
<tr>
<td>60%</td>
</tr>
<tr>
<td>5 sec</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Information]</td>
</tr>
<tr>
<td>◀ Engine hardware Id</td>
</tr>
<tr>
<td>◀ Engine software Id</td>
</tr>
<tr>
<td>◀ Engine Dataset1 Id</td>
</tr>
</tbody>
</table>

47702905 - Downloaded from www.volvopenta.com 01/08/2013 16:40:48
The DU is an computerized instrument panel which shows engine working values on an LCD screen. In the display it is possible to show multiple windows with different information, i.e. engine rpm, coolant temperature, fuel consumption and fault messages.

At start up, the display performs a self-test. If an constant signal is heard, the system has discovered a malfunction. The display will work but may act in an unexpected way.

The DU is connected between the engine control unit and the CIU or DCU.

Display modes

Press any of button 1–4 to view the function menu for the buttons, appearing in the lower part of the display. To leave the menu, wait a few seconds or press button 5 (EXIT).

1. Engine
2. Multi
3. Trip
4. Graph
5. Exit

Contrast

In the display modes Engine, Trip and Graph, it is possible to adjust the contrast. Press button 5 outside the menu and then + (button 4) or – (button 3) to adjust the contrast.
Engine
Rpm and coolant temperature is shown in the upper part of the display. In the lower part it will show trip computer and a fuel level indicator, if these function are installed.

Multi
In the multi mode, button 2, the information can be shown in four windows, analogue or digital. The display toggles between the two when button 2 is pressed repeatedly.
By pressing button 5, the right arrow, you choose what information to be shown in the different windows. Press repeatedly on the button that correspond to the window, until desired information is shown.

Trip
To display the trip computer press button 3, Trip
- Trip Fuel, since last reset
- Fuel Rate, fuel consumption
- Trip hours, since last reset
- Engine hours, total amount of operating hours
Reset by pressing button 3 for three seconds until a beep is heard.

Graph
The information is shown as graphs. Press button 4 repeatedly to choose what information will be shown. The time interval is set in the Configuration menu. If the connection is broken there will be a straight line in the display.
Configuration menu

Press button 5 for three seconds to enter the Configuration menu. Navigate with the up and down arrows, select with the right arrow.

Units

- PRESSURE; kPa, PSI
- VOLUME; LITRE, GAL, Imperial GAL. Fuel rate is adjusted according to volume unit, L/H, GAL/H, I GAL/H.
- TEMPERATURE; °C, °F

Alarm Status

List of active alarms, refer to Fault Handling page 33
Settings
- LANGUAGE; setting of what language is to be used in the display.
- BLEEP; On/Off, setting if pressing the instrument buttons will be followed by a beep or not.
- DISPLAY; setting of ENGINE RPM gauges RPM ENGINE, 2500–9000 RPM, in steps of 500 RPM GRAPH RANGE, 2 minutes– 8 hours in the following steps, 2MINS, 10MINS, 30MINS, 60MINS, 2HRS, 4HRS, 8HRS

SYSTEM
- DEMO, switches the DEMO mode ON/OFF.
- RESTORE DEFAULTS, reset all configuration to default values.
- COM VIEWER, displays latest message on communication ports
- PROG TX, transfers content of the application on Flash memory to other CAN units on the same CAN bus.
- ABOUT, displays ID NO – display serial number EEPROM – number of write on EEPROM VERS – software version number CHK – Flash memory checksum PART No – Volvo software part number SOURCE – source of received data LABLE – Allocated Label on the same bus.
CIU (Control Interface Unit)

The CIU is a "translator" between the control unit (EMS) and the customer's own control panel. The CIU has two serial communication links, one fast and one slow.

The fast one is a so-called CAN link. All data related to instruments, indication lamps, connectors and potentiometers is controlled by this link.

The slow link manages diagnostic information for flashing codes etc.

Easy Link Instruments

The following Easy Link instruments are available:

- Tachometer / hours counter (fault codes are also displayed on the tachometer display when the diagnostic button is pressed)
- Coolant temperature
- Oil pressure
- Oil temperature
- Battery voltage
- Alarm panel
- Turbo pressure
Starting

Make it a habit of giving the engine and engine room a visual check before starting. This will help you to discover quickly if anything abnormal has happened, or is about to happen. Also check that instruments and warning displays show normal values after you have started the engine.

⚠️ WARNING!

Never use start spray or similar agents to start an engine. This may cause an explosion in the inlet manifold. Danger of personal injury.

Before Starting

- Check that the oil level is between the MIN and MAX marks.

NOTICE! The oil level can be read both when the engine is stopped (the STOP side of the dipstick) and with the engine running (the OPERATING side of the dipstick). For filling refer to Oil level, checking and topping up.

- Open the fuel valves.

- Check the fuel pre-filter; refer to Draining condensate, fuel system page 55.

- Check the coolant level and that the radiator is not blocked externally. Refer to Coolant Level, Checking and Topping Up page 58 and Charge Air Cooler, External Cleaning page 60

⚠️ WARNING!

Do not open the coolant filler cap when the engine is warm, except in emergencies, this could cause serious personal injury. Steam or hot fluid could spray out.

- Check that no leakage of oil, fuel or coolant is present.

- Turn the main switch(es) on.

- Move the engine speed control to idle, and open the disengageable clutch/gearbox if installed.

IMPORTANT!

Never break the circuit with the main switch while the engine is running, as this may damage the alternator.
Starting the Engine

EMS (Engine Management System)

The pre-heating time is adjusted to suit the engine temperature, and can last for up to 50 seconds both before and after starting.

The starter motor connection time is maximized to 20 seconds. After that, the starter motor circuit is cut for 80 seconds to protect the starter motor against over-heating.

DCU (Display Control Unit)

With pre-heating

1. Depress the ON/OFF-button (6).
2. Press the SEL button (8) to come to the main-menu.
3. Scroll down to Preheater with scroll button (7), press SEL-button (8).
4. In the pre-heater menu, press the SEL-button (8) to select pre-heating.
5. Press the START-button (2).

Without pre-heating

1. Depress the ON/OFF-button (6).
2. Press the START-button (2).

Leave the engine to idle for the first 10 seconds. Then warm the engine up at low speed and under low load. Never race the engine when it is cold.
Starting in Extreme Cold

Certain preparations must be made to facilitate engine starting, and in some cases to make starting possible at all:

- Use a winter grade fuel (of a well-known make) which has been approved for the relevant temperature. This reduces the risk of wax deposits in the fuel system. At extremely low temperatures, the use of a fuel heater is recommended.

- For fully acceptable lubrication, a synthetic engine oil of recommended viscosity for the relevant temperature should be used. Please refer to the Maintenance, lubrication system chapter. Synthetic lubricants are able to manage a wider temperature range than mineral-based lubricants.

- Pre-heat the coolant with a separately installed electric engine heater. In extreme cases, a diesel-burning engine heater may be needed. Ask your Volvo Penta dealer for advice.

- Make sure that the cooling system is filled with a glycol mixture. Please refer to the Maintenance, cooling system chapter.

- The batteries should be in good condition. Cold weather reduces battery capacity. Increased battery capacity may be necessary.

Never Use Start Spray

⚠️ WARNING! ⚠️

Never use start spray or similar agents to start an engine. This may cause an explosion in the inlet manifold. Danger of personal injury.
Starting Using Auxiliary Batteries

⚠️ WARNING!
Explosion hazard. Batteries contain and give off an explosive gas which is highly flammable and explosive. A short circuit, open flame or spark could cause a violent explosion. Ventilate well.

1 Check that the auxiliary batteries are connected (series or parallel) so that the rated voltage corresponds to the engine system voltage.

2 First connect the red (+) jumper cable to the auxiliary battery, then to the flat battery. Then connect the black (-) jumper cable to the auxiliary battery and to a location that is somewhere away from the discharged battery, e.g. the main switch negative terminal or the negative terminal on the starter motor.

3 Start the engine.

⚠️ WARNING!
Do not touch the connections during the start attempt: Risk of arcing. Do not bend over any of the batteries either.

4 Remove the cables in the reverse order.

IMPORTANT!
The ordinary cables to the standard batteries must not be loosened on any condition.
Operation

Correct operating technique is very important for both fuel economy and engine life. Always let the engine warm up to normal operating temperature before operating at full power. Avoid sudden throttle openings and operation at high engine rpm.

Reading the Instruments

Check all instruments directly after starting, and then regularly during operation.

NOTICE! On engines in continuous operation, the lubrication oil level must be checked at least every 24 hours. Refer to Oil level, checking and topping up.

Check all instruments directly after starting, and then regularly during operation.

NOTICE! On engines in continuous operation, the lubrication oil level must be checked at least every 24 hours. Refer to Oil level, checking and topping up.

Alarms

If the EMS 2 system receives abnormal signals from the engine, the control unit generates fault codes and alarms, in the form of lamps and audible warnings. This is done by means of CAN signals to the instrument.

More information about fault codes and fault tracing can be found in the chapter. Fault Handling page 30.
Maneuvering

Operation at low load

Avoid long-term operation at idle or at low load, since this can lead to increased oil consumption and eventually to oil leakage from the exhaust manifold, since oil will seep past the turbocharger seals and accompany the induction air into the inlet manifold at low turbo pressure.

One consequence of this is carbon build-up on valves, piston crowns, exhaust ports and the exhaust turbine.

At low loads, the combustion temperature may become so low that complete combustion cannot be ensured, resulting in possible fuel dilution of lubricating oil and eventually leakage from the exhaust manifold.

If the following points are done as a complement to normal maintenance, there will be no risk of malfunctions caused by operation at low load.

- Reduce operation at low load to a minimum. If the engine is regularly test-run without load once a week, the duration of this operation should be limited to 5 minutes.
- Run the engine at full load for about 4 hours once a year. In this way carbon deposits in the engine and exhaust system are given the chance to burn up.
Engine Shutdown

During longer breaks in operation, the engine must be warmed up at least once every two weeks. This prevents corrosion in the engine. If you expect the engine to remain unused for two months or more, it must be laid up: Refer to the chapter Storage page 67.

Before Engine Shutdown

Let the engine run for a few minutes without loading before stopping it. This allows engine temperature equalization and prevents boiling once stopped and also allows the turbocharger to cool down. This contributes to long service life without malfunctions.

Stop the Engine

- Disengage the clutch (if possible).
- Depress the STOP-button (5).

After Engine Shutdown

1. Check the engine and engine bay for leakage.
2. Turn off the main switches before any long stoppage.
3. Carry out maintenance in accordance with the schedule.

For longer breaks in operation

During longer breaks in operation, the engine must be warmed up at least once every two weeks. This prevents corrosion attacks in the engine. If you expect the engine to be unused for two months or more, it must be laid up. Refer to the chapter Short Term Storage.

NOTICE! If there is a risk of frost, the coolant in the cooling system must have sufficient frost protection. Refer to the chapter Maintenance page 56. A poorly-charged battery can freeze and burst; refer to Battery, Charging page 66.
Extra Stop

For location of the extra stop, please refer to *Location of Sensors page 45.*

⚠️ **WARNING!**
Working with or going close to a running engine is a safety risk. Watch out for rotating components and hot surfaces.
Fault Handling

Fault Tracing

A number of symptoms and possible causes of engine malfunctions are described in the table below. Always contact your Volvo Penta dealer if any problems occur which you can not solve by yourself.

IMPORTANT!
Read through the safety advice for care and maintenance work in the chapter Safety Information page 3 before you start work.

<table>
<thead>
<tr>
<th>Symptoms and possible causes</th>
<th>Please refer to Diagnostic Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>The diagnosis button lamp flashes</td>
<td></td>
</tr>
<tr>
<td>Engine can not be stopped</td>
<td>2, 5</td>
</tr>
<tr>
<td>Starter motor does not rotate</td>
<td>1, 2, 3, 4, 5, 6, 7, 24</td>
</tr>
<tr>
<td>Starter motor rotates slowly</td>
<td>1, 2</td>
</tr>
<tr>
<td>Starter motor rotates normally but engine does not start</td>
<td>8, 9, 10, 11, 13</td>
</tr>
<tr>
<td>Engine starts but stops again</td>
<td>8, 9, 10, 11, 13</td>
</tr>
<tr>
<td>Engine does not reach correct operating speed at full throttle</td>
<td>9, 10, 11, 12, 13, 21, 25, 26</td>
</tr>
<tr>
<td>Engine runs roughly</td>
<td>10, 11</td>
</tr>
<tr>
<td>High fuel consumption</td>
<td>12, 13, 15, 25</td>
</tr>
<tr>
<td>Black exhaust smoke</td>
<td>12, 13</td>
</tr>
<tr>
<td>Blue or white exhaust smoke</td>
<td>15, 22</td>
</tr>
<tr>
<td>Too low lubrication oil pressure</td>
<td>16</td>
</tr>
<tr>
<td>Excessive coolant temperature</td>
<td>17, 18, 19, 20, 28</td>
</tr>
<tr>
<td>Too low coolant temperature</td>
<td>20</td>
</tr>
<tr>
<td>No, or poor charge</td>
<td>2, 23</td>
</tr>
<tr>
<td>Too high exhaust temperature (only TWD1643GE)</td>
<td>13, 17, 18, 19, 21, 25, 27, 28, 29, 30</td>
</tr>
</tbody>
</table>
1 Discharged batteries
2 Poor contact/open circuit in electrical wiring
3 Main switch turned off
4 Main fuse faulty
5 Faulty ignition lock
6 Faulty main relay
7 Faulty starter motor/-solenoid
8 No fuel:
 – fuel cocks closed
 – fuel tank empty/wrong tank connected
9 Blocked fuel fine-filter/pre-filter (due to contaminations, or stratification in the fuel at low temperature)
10 Air in the fuel system
11 Water/contamination in fuel
12 Faulty fuel injectors
13 In sufficient air supply to the engine:
 – blocked air filter
 – air leakage between the turbo and the engine's intake manifold
 – dirty compressor part in the turbocharger
 – faulty turbo compressor
 – poor engine room ventilation
14 Coolant temperature too high
15 Coolant temperature too low
16 Oil level too low
17 Coolant level too low
18 Air in the coolant system
19 Faulty circulation pump
20 Defective thermostat
21 Blocked charge air cooler
22 Oil level too high
23 Alternator drive belt slips
24 Water entry into engine
25 High back pressure in the exhaust system
26 Break in "Pot+" cable to throttle
27 High temperature, charge air cooler
28 Blocked radiator
29 No pressure in cooling system
30 Check wastegate function
Diagnostic Function

The diagnostic function monitors and controls the engine and SCR System. The diagnostic function has the following tasks:

- detecting and locating disturbances
- reporting detection of disturbances
- providing guidance when fault tracing

A fault message in the form of a fault code is always generated when a disturbance is detected by the diagnostic function. If the diagnostic function detects a disturbance in the system, this is reported with a fault code via the instruments.

The diagnostic function protects the engine and ensures continued operation by affecting the engine, depending on the severity the engine is affected differently.

Depending on what instrumentation that is being used the fault message is shown in various ways (fault codes can also be read out by VODIA).

All fault codes and fault messages can be found in the Fault Code Register together with information about cause, reaction and actions, for further information see chapter Fault Code Register.

CIU (Control Interface Unit)

When the system detects a malfunction, the diagnostics lamp flashes. If the diagnostics button is pressed and then released, a fault code is flashed out.

The fault code consists of two groups of flashes, separated by a pause of two seconds. A fault code is obtained by counting the number of flashes in each group.

Example

\[\star \star \text{pause} \star \star \star \star \star = \text{fault code 2.4} \]

The fault code is stored and can be read off as long as the malfunction remains. Information about causes, effects and actions required is available in the Fault Code chapter.

Do as follows to read off the fault code:

1. Press the diagnostics button.
2. Release the diagnostics button and note down the fault that is flashed out.
3. Repeat items 1–2. A new fault code will be flashed out if more faults are stored. Repeat until the first fault code reappears.

NOTICE! When the first fault code reappears, all fault codes have been read off.
If the diagnostics button is pressed after the fault has been rectified and the fault codes have been erased, code 1.1 “No fault” will be displayed.

DU (Display Unit)

1. When the system detects a fault, a pop-up is shown on the display. Depending on the severity of the fault the following text will appear **ALARM STOP / PRESS ANY KEY** or **WARNING! / PRESS ANY KEY**; a buzzer will sound.

2. Reduce engine speed to idle or shut down the engine.

3. Press the SEL button to get to the fault list. The fault list shows fault messages and the number of hours of operation when the fault occurred.

4. Press **ACK** to acknowledge the fault code. The display background changes color (and the buzzer stops). The fault must be acknowledged before it can disappear from the fault list.

5. Look up the fault code in the **Fault Code Register** and take the necessary actions.

6. Press button 4 for at least three seconds to view SPN and FMI codes.

7. Press **EXIT** to leave the fault list. Alarms that are acknowledged and rectified are automatically erased from the list.
Display Control unit (DCU)

1. When a fault is detected the following text is displayed:
 !! ENGINE WARNING !! alternating with Press SEL for information.

2. Reduce engine speed to idle or shut down the engine.

3. Press the SEL button to get to the fault list. The fault list shows:
 - hours of operation
 - fault messages
 - active/non-active faults

4. Look up the fault code in the Fault Code Register and take the necessary actions.

5. Press ESC to leave the fault list.

NOTICE! To get to the fault list when no fault codes are set, press the SEL button and select Diagnostics from the menu.
Easy Link Instruments

1. When the system detects a fault the diagnostics lamp flashes.

2. Press the diagnostics button. The fault code is shown as text in the tachometer display.

3. Look up the fault code in the *Fault Code Register* and take the necessary actions.

4. When the fault has been rectified, the fault code disappears from the display and the diagnostics lamp goes out.

If the diagnostics lamp is pressed after the fault has been rectified and the fault code erased, the code **1.1, No fault** will be displayed.

Erasing fault codes

The memory of the diagnostic function is reset when the power to the engine is disconnected. When the power is switched on again the diagnostic function will check if there are any malfunctions in the system. If so a new fault codes is registered.

NOTICE! Power must be disconnected completely.

This means that fault that hasn't been corrected:

1. are shown as active, the active fault code can then be erased with the VODIA tool.

2. must be acknowledge and read out every time the engine is switched on.

If the diagnostic button is depressed after the fault has been corrected and fault code deleted, the code **1.1, No fault**, will show.
Fault Code Register

Fault code, engine

<table>
<thead>
<tr>
<th>SPN</th>
<th>PID</th>
<th>PPID</th>
<th>SID</th>
<th>PSID</th>
<th>Flash code</th>
<th>FMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td>2.7/- (EMS) 2.8/- (CIU)</td>
<td>9</td>
</tr>
<tr>
<td>94</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td>3.6/3.8</td>
<td>1, 3, 5, 7</td>
</tr>
<tr>
<td>97</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td>2.9/2.1</td>
<td>0, 3, 4</td>
</tr>
<tr>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td>5.9/5.7</td>
<td>1, 3, 4, 5</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>3.1/6.6</td>
<td>1, 3, 5, 18</td>
</tr>
<tr>
<td>102</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td>3.2/6.2</td>
<td>0, 4, 5, 16</td>
</tr>
<tr>
<td>106</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td>3.4/3.5</td>
<td>0, 3, 5, 16</td>
</tr>
<tr>
<td>107</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td>5.5/5.5</td>
<td>0, 3, 4, 5</td>
</tr>
<tr>
<td>108</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td>-/-</td>
<td>2, 3, 4</td>
</tr>
<tr>
<td>110</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td>3.3/6.1</td>
<td>0, 4, 5, 16</td>
</tr>
<tr>
<td>111</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td>2.3/2.2</td>
<td>1, 3, 5</td>
</tr>
<tr>
<td>153</td>
<td>153</td>
<td></td>
<td></td>
<td></td>
<td>7.8/7.7</td>
<td>0, 2, 3, 5</td>
</tr>
<tr>
<td>158</td>
<td>158</td>
<td></td>
<td></td>
<td></td>
<td>-3.9 (EMS) -6.9 (CIU)</td>
<td>1, 3, 4</td>
</tr>
<tr>
<td>164</td>
<td>164</td>
<td></td>
<td></td>
<td></td>
<td>8.3</td>
<td>2, 4, 5</td>
</tr>
<tr>
<td>171</td>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td>7.9/-</td>
<td>4, 5</td>
</tr>
<tr>
<td>172</td>
<td>172</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td>3.7/5.8</td>
<td>0, 4, 5, 16</td>
</tr>
<tr>
<td>190</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td>-2.6</td>
<td>0, 16</td>
</tr>
<tr>
<td>608</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td>-/-</td>
<td>9</td>
</tr>
<tr>
<td>608</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td>2.8/-</td>
<td>9</td>
</tr>
<tr>
<td>608</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td>9.2/-</td>
<td></td>
</tr>
<tr>
<td>608</td>
<td>201</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>620</td>
<td></td>
<td></td>
<td>232</td>
<td></td>
<td>9.3/-</td>
<td>3, 4</td>
</tr>
<tr>
<td>626</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td>5.4/-</td>
<td>3, 4, 5</td>
</tr>
<tr>
<td>628</td>
<td></td>
<td></td>
<td>240</td>
<td></td>
<td>9.9/-</td>
<td>2, 12</td>
</tr>
<tr>
<td>629</td>
<td></td>
<td></td>
<td>254</td>
<td></td>
<td>9.9/- (EMS) 9.8/- (CIU)</td>
<td>8, 12</td>
</tr>
<tr>
<td>SPN</td>
<td>PID</td>
<td>PPID</td>
<td>SID</td>
<td>PSID</td>
<td>Flash code Electrical fault/Value fault</td>
<td>FMI</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>630</td>
<td>253</td>
<td>9.9/- (EMS) 9.8/- (CIU)</td>
<td>2, 12, 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>636</td>
<td>21</td>
<td>2.5/-</td>
<td>2, 3, 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>637</td>
<td>22</td>
<td>2.4/-</td>
<td>2, 3, 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>639</td>
<td>231</td>
<td>6.5/- (EMS) 6.4/- (CIU)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>647</td>
<td>33</td>
<td>3, 4, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>651</td>
<td>1</td>
<td>7.1/-</td>
<td>3, 4, 5, 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>652</td>
<td>2</td>
<td>7.2/-</td>
<td>3, 4, 5, 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>653</td>
<td>3</td>
<td>7.3/-</td>
<td>3, 4, 5, 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>654</td>
<td>4</td>
<td>7.4/-</td>
<td>3, 4, 5, 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>655</td>
<td>5</td>
<td>7.5/-</td>
<td>3, 4, 5, 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>656</td>
<td>6</td>
<td>7.6/-</td>
<td>3, 4, 5, 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>677</td>
<td>39</td>
<td>4.6/-</td>
<td>3, 4, 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>679</td>
<td>42</td>
<td>8.3/-</td>
<td>3, 4, 5, 6,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>679</td>
<td>97</td>
<td>8.3</td>
<td>0, 7, 11, 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>729</td>
<td>70</td>
<td>8.6</td>
<td>3, 4, 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>970</td>
<td>6</td>
<td>4.8/- (EMS)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>975</td>
<td>26</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1072</td>
<td>122</td>
<td>1, 3, 4, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1079</td>
<td>232</td>
<td>9.3/-</td>
<td>3, 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1080</td>
<td>211</td>
<td>9.3/-</td>
<td>3, 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1136</td>
<td>55</td>
<td>8.4</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1184</td>
<td>173</td>
<td>4.9/1.9</td>
<td>0, 4, 5, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1188</td>
<td>32</td>
<td>3, 4, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1231</td>
<td>232</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1231</td>
<td>229</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1239</td>
<td>96</td>
<td>8.3</td>
<td>0, 1, 4, 7, 12, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1377</td>
<td>98</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1485</td>
<td>5</td>
<td>5.1/-</td>
<td>0, 3, 4, 5, 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1675</td>
<td>3</td>
<td>0, 3, 4, 5, 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1675</td>
<td>39</td>
<td>0, 3, 4, 5, 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>201</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2791</td>
<td>19</td>
<td>8.5</td>
<td>3, 4, 5, 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2898</td>
<td>3</td>
<td>3, 4, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2899</td>
<td>3</td>
<td>3, 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2898</td>
<td>332</td>
<td>3, 4, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3241</td>
<td>386</td>
<td>0, 7, 4, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3509</td>
<td>232</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3510</td>
<td>211</td>
<td>3, 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAE J1939 Data Link</th>
<th>1231</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>航线数据链接</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>航线数据链接</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>传感器电压#1 (+5V DC)</td>
<td>1231</td>
<td>3509</td>
</tr>
<tr>
<td>传感器电压#2 (+5V DC)</td>
<td>1231</td>
<td>3510</td>
</tr>
<tr>
<td>Description</td>
<td>SPN</td>
<td>PID</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Piston cooling oil pressure</td>
<td>4811</td>
<td>8</td>
</tr>
<tr>
<td>Piston cooling pressure</td>
<td>520192</td>
<td></td>
</tr>
<tr>
<td>Starter input sensor</td>
<td>520194</td>
<td>4</td>
</tr>
<tr>
<td>Stop Input, CIU</td>
<td>520195</td>
<td>6</td>
</tr>
<tr>
<td>Frequency select input</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Diagnostic request switch input</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>Oil pressure warning lamp status</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Coolant level warning lamp status</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>Diagnostic lamp status</td>
<td>262</td>
<td></td>
</tr>
<tr>
<td>Run indication lamp status</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>Over speed indication lamp status</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>Coolant temperature warning lamp output</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Your Volvo Penta engine and its equipment are designed for high reliability and long life. It is built so as to have minimal environmental impact. If given preventive maintenance, according to the maintenance schedule, and if Volvo Penta original spares are used, these properties are retained and unnecessary malfunctions can be avoided.

CAUTION!
Read the chapter on Maintenance before starting work. It contains instructions on how to carry out maintenance and service operations in a safe and correct manner.

When both operation and calendar time are specified, perform the maintenance job at the interval which is reached first.

Service program

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSI</td>
<td>First Service Inspection</td>
</tr>
<tr>
<td>S1, S2, S3</td>
<td>Special Interval Service</td>
</tr>
<tr>
<td>A - F</td>
<td>Type of service (regular service)</td>
</tr>
<tr>
<td>C</td>
<td>Clean</td>
</tr>
<tr>
<td>R</td>
<td>Replace</td>
</tr>
<tr>
<td>A</td>
<td>Adjustment</td>
</tr>
<tr>
<td>L</td>
<td>Lubrication</td>
</tr>
<tr>
<td>I</td>
<td>Inspection (includes, if necessary, cleaning, adjustment, lubrication and change)</td>
</tr>
</tbody>
</table>

FSI = First Service Inspection

After the first 100-200 Hours (1)

- Inspection with VODIA (Diagnostic Tool)(2)
- Fuel pre-filter, draining water / contamination
- Air Filter
- Coolant level and antifreeze mixture
- Drive belts, belt tensioner and idler wheels.

Start and warm up engine

- Engine and transmission, abnormal noises
- Engine and transmission, oil / fuel / water leakage

1) Or within 180 days of the date of delivery, or the end of the first season, whichever comes first.
2) Readout if any fault codes and LVD

S1

Every 150-600 hours / at least every 12 months (1)

- Engine Oil and Oil Filters / By-pass filter

1) Oil change intervals vary, depending on engine type, oil grade and sulfur content of the fuel. Change the filters during each oil change.

S2

Oil Analysis

- See dealer’s information
- SB 17–0–2

S3

After the First 1000 Hours

- Valve clearance
A

<table>
<thead>
<tr>
<th>Every 500h /</th>
<th>At least every (month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection with VODIA (Diagnostic Tool)(^{(1)})</td>
<td>I ●</td>
</tr>
<tr>
<td>Fuel pre-filter, draining water / contamination</td>
<td>C ●</td>
</tr>
<tr>
<td>Air Filter</td>
<td>I ●</td>
</tr>
<tr>
<td>Coolant level and antifreeze mixture</td>
<td>I ●</td>
</tr>
<tr>
<td>Drive belts, belt tensioner and idler wheels.</td>
<td>I ●</td>
</tr>
<tr>
<td>Batteries, electrolyte level</td>
<td>I ●</td>
</tr>
</tbody>
</table>

Start and warm up engine

- Engine and transmission, abnormal noises | I ● |
- Engine and transmission, oil / fuel / water leakage | I ● |

\(^{(1)}\) Readout if any fault codes and LVD

B

<table>
<thead>
<tr>
<th>Every 1000h /</th>
<th>At least every (month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine and reverse gear, inspect hoses and cable clamping</td>
<td>I ●</td>
</tr>
<tr>
<td>Air Filter</td>
<td>R ●</td>
</tr>
<tr>
<td>Fuel pre-filter</td>
<td>R ●</td>
</tr>
<tr>
<td>Fuel fine filter</td>
<td>R ●</td>
</tr>
<tr>
<td>Engine and transmission, cleaning/ painting</td>
<td>I ●</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Every 2000 Hours /</th>
<th>At least every (month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve clearance</td>
<td>I</td>
</tr>
<tr>
<td>Turbocharger, inspect / clean as required</td>
<td>I ●</td>
</tr>
<tr>
<td>Drive Belts</td>
<td>R ●</td>
</tr>
<tr>
<td>Air Filter, Compressor</td>
<td>R ●</td>
</tr>
<tr>
<td>Air Filter, Tank Breather</td>
<td>R ●</td>
</tr>
<tr>
<td>AdBlue filter</td>
<td>R ●</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Every 8000 hours</th>
<th>At least every (month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant VCS (yellow)(^{(1)})</td>
<td>R ●</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Different types of coolant must not be mixed with each other.
Maintenance

This chapter describes the most common maintenance items, see Service program for service intervals.

NOTICE! Service points which are not described here must be performed by authorized Volvo Penta workshop.

⚠️ CAUTION!
Read the chapter on Maintenance before starting work. It contains instructions on how to carry out maintenance and service operations in a safe and correct manner.

⚠️ WARNING!
Care and maintenance work should be done with the engine stopped unless otherwise specified. Stop the engine before opening or removing the engine hatch/hood. Make it impossible to start the engine by removing the start key and cutting the system voltage with the main switches.

Read about security measures for maintenance and service in the chapter Safety Information page 3 before you begin.
Orientation

TAD1640GE, TAD1640VE-B, TAD1641GE, TAD1641VE, TAD1641VE-B, TAD1642GE, TAD1642VE, TAD1642VE-B, TAD1643VE

1 AC generator
2 Control unit EMS 2
3 Air Filter
4 Oil filter
5 Oil dipstick
6 Fuel filter, with fuel pressure monitor
7 Fuel prefilter with water monitor
8 Expansion tank
9 Radiator
10 Starter motor
TWD1643GE

1 Control unit EMS 2
2 Charge air cooler, high pressure turbo
3 Oil filler cap, engine
4 Oil dipstick
5 Fuel filter, with fuel pressure monitor
6 Fuel prefilter with water monitor
7 Air Filter
8 High Pressure Turbo
9 Low Pressure Turbo
10 Expansion tank
11 Throttle (TWG1663GE)
12 Starter motor, located behind charge air cooler
13 Charge air cooler, low pressure turbo
14 Oil filter
1 Control unit, EMS
2 Oil filler
3 Oil dipstick
4 Fuel filter, to be installed separately
5 Fuel pre-filter with water monitor, to be installed separately
6 Starter motor
Location of Sensors

TAD1640GE, TAD1640VE-B, TAD1641GE, TAD1641VE, TAD1642GE, TAD1642VE, TAD1642VE-B, TAD1643VE

1 Coolant level sensor, in expansion tank
2 Charge air pressure and temperature sensor
3 Air filter indicator
4 Flywheel position and engine speed sensor
5 Fuse
6 Aux stop
7 Oil pressure sensor
8 Water in fuel sensor
9 Oil level and temperature sensor
10 Fuel pressure sensor
11 Crankhouse pressure sensor
12 Coolant temperature sensor
13 Piston cooling pressure sensor (not TAD1650/51GE)
14 Camshaft position sensor
Location of Sensors

TWD1643GE

1 Coolant level sensor, in expansion tank
2 Charge air pressure and temperature sensor
3 Oil pressure sensor
4 Airfilter indicator
5 Aux stop
6 Fuse
7 “Water in fuel” sensor
8 Fuel pressure sensor
9 Oil level and temperature sensor
10 Crankhouse pressure sensor
11 Coolant temperature sensor
12 Exhaust temperature sensor
13 Piston cooling pressure sensor
14 Flywheel position and engine speed sensor
15 Camshaft position sensor
16 Solenoid valve, drainage, water trap (optional), not shown in illustration
Location of Sensors

TAD1650GE, TAD1650VE, TAD1651GE

1 Crankcase pressure sensor
2 Charge air pressure and temperature sensor
3 Flywheel position and engine speed sensor
4 Fuse
5 Aux stop
6 Oil pressure sensor
7 Oil level and temperature sensor
8 Water in fuel sensor
9 Fuel pressure sensor
10 Coolant temperature sensor
11 Piston cooling pressure sensor
12 Camshaft position sensor
Engine, General

General inspection

Make it a habit to give the engine and engine bay a visual inspection before starting the engine and after operation once the engine has stopped. This will help you to discover quickly if anything abnormal has happened, or is about to happen. Look especially carefully at oil, fuel and coolant leakage, loose bolts, worn or poorly tensioned drive belts, loose connections, damaged hoses and electrical cables. This inspection only takes a few minutes and can prevent serious malfunctions and expensive repairs.

⚠️ WARNING!
Accumulations of fuel, oil and grease on the engine or in the engine room is a fire hazard and must be removed immediately they are detected.

⚠️ WARNING!
If an oil, fuel or coolant leak is detected, the cause must be investigated and the fault rectified before the engine is started.

IMPbRANT!
Remember the following when washing with a power washer: Never aim the water jet at radiators, charge air cooler, seals, rubber hoses or electrical components.

Air Filter, Check and Change

The engine is equipped with electronic air filter indication. The control unit provides an output signal which is announced as a warning on the instrument panel. The warning indicates a pressure drop in the air filter, which must then be checked and possibly changed.

- Scrap the old filter. No cleaning or re-use is permissible
- In continuous operation, the filter should be checked every 8 hours. For operations in extremely dirty environments such as coal mines and rock crushing mills, special air filters must be used.
Charge Air Pipe, Leakage Check

Inspect the condition of the charge air hoses, hose unions and clamp condition for cracks and other damage. Change as necessary.

IMPORTANT!
Clamps must be tightened using a torque wrench to $9 \pm 2 \text{ Nm}$ ($6.6 \pm 1.5 \text{ lbf.ft.}$).

Drive Belt and Alternator Belt, Inspection

Inspections must be carried out after operations, while the belts are hot.
You should be able to depress the alternator belt and the drive belt about 3-4 mm between the pulleys.
The alternator belts and drive belts have automatic belt tensioners and do not need to be adjusted.
Check the condition of the drive belts. Replace as necessary; refer to *Alternator Belt, Change page 50* and *Drive Belt, Change page 51*.
Alternator Belt, Change

IMPORTANT!
Always change a drive belt which appears worn or cracked.

1. Disconnect the main switch(es) and check that the engine is not connected to system voltage.
2. Remove the fan guard and fan ring round the cooling fan.
3. Remove the belt guard.
4. Insert a 1/2" square wrench in the belt tensioner (1). Lift the wrench up and lift the water pump drive belt off.
5. Insert a 1/2" square wrench in the belt tensioner (2). Press the wrench down and remove the alternator belts.
6. Check that the pulleys are clean and undamaged.
7. Press the 1/2" wrench in the belt tensioner (2) down and install the new alternator drive belt.
8. Lift the 1/2" wrench in the belt tensioner (2) and install the new water pump drive belt.
9. Install the belt guards.
10. Install the fan guard and fan ring round the cooling fan.
11. Start the engine and do a function check.
Drive Belt, Change

1. Disconnect the main switch(es) and check that the engine is not connected to system voltage.
2. Remove the fan guard and fan ring round the cooling fan.
3. Remove the belt guard.
4. Insert a 1/2" square wrench in the belt tensioner (1). Lift the wrench and remove the drive belt.
5. Thread the drive belt round the fan and remove it.
6. Check that the pulleys are clean and undamaged.
7. Thread the new drive belt over the fan.
8. Lift the 1/2" wrench and install the new drive belt.
9. Install the belt guards.
10. Install the fan guard and fan ring round the cooling fan.
11. Start the engine and do a function check.
Lubrication System

Oil change intervals may vary according to the lubrication oil grade and fuel sulfur content. Refer to Technical data, Lubrication system.

NOTICE! Oil change intervals must never exceed a period of 12 months.

If longer oil change intervals than those given in Technical data are required, the condition of the oil must be checked by the oil manufacturer via regular oil tests.

Oil level, checking and topping up

The oil level must be inside the marked area on the dipstick and must be checked daily before the first start.

- Top up with oil via the filler opening, please refer to Maintenance page 42.
- The oil level can be read both when the engine is stationary (the STOP side of the dipstick) and with the engine running (the OPERATING side of the dipstick). Do not fill up above the maximum oil level. Only use a recommended grade of oil, please refer to Technical Data page 71.
- The oil level sensor only measures the oil level at the time when the ignition is turned on. In other words, not continually during operation.

TAD1650VE

The oil level must be inside the marked area on the dipstick and must be checked daily before the first start. Top up with oil via the filler opening, located on the side of the engine. Check that the correct level has been achieved. If the engine is stationary, wait for a few minutes to allow the oil to run down into the oil pan.

IMPORTANT!

Do not fill up above the maximum oil level. Only use a recommended grade of oil, please refer to Technical Data page 71.
Engine Oil, Change

⚠️ WARNING!
Hot oil and hot surfaces can cause burns.

Oil changes must be done when the engine is warm.

1. Connect the drain hose to the oil drain pump and check that no leakage can occur.
2. Pump the oil out (or remove the bottom drain plug and drain the oil). Collect all the old oil and old filters, and leave them at a re-cycling station for destruction.
3. Remove the drain hose (or install the bottom drain plug).
4. Fill with engine oil.
 For change volume, please refer to Technical Data page 71.

Oil Filter/By-pass Filter, Change

⚠️ WARNING!
Hot oil and hot surfaces can cause burns.

1. Clean the oil filter bracket (2).
2. Remove all oil filters with a suitable oil filter extractor (1).
3. Clean the mating surface of the oil filter bracket. Make sure that no pieces of old oil seal are left behind. Carefully clean round the inside of the protective rim (2) on the oil filter bracket.
4. Put a thin layer of engine oil on the seal rings of the new fuel filters.
5. Install the new oil filters. Tighten the filters ¾–1 turn after they touch.
6. Top up with engine oil, start the engine and let it run for 20-30 seconds.
7. Turn off the engine, check the oil level and top up as required.
8. Check sealing round the oil filters.
Fuel System

⚠️ WARNING!
Fire hazard. When carrying out work on the fuel system make sure the engine is cold. A fuel spill onto a hot surface or an electrical component can cause a fire. Store fuel soaked rags so that they can not cause fire.

Only use the grades of fuel recommended in the fuel specification below, please refer to Technical Data page 72. Always observe the greatest cleanliness during re-fueling and work on the fuel system.

IMPORTANT!
All work on the injection system of the engine must be done by an authorized workshop.

Engine Fuel Filter Replacement

⚠️ WARNING!
Fire hazard. When carrying out work on the fuel system make sure the engine is cold. A fuel spill onto a hot surface or an electrical component can cause a fire. Store fuel soaked rags so that they can not cause fire.

IMPORTANT!
Do not fill the new fuel filter with fuel before assembly. There is a risk that contamination could get into the system and cause malfunctions or damage.

1 Clean round the fuel filter.
2 Remove the filter with a suitable filter remover. Collect any spilled fuel in a collection vessel.
3 Clean the filter mating surface on the filter bracket.
4 Lubricate the seal with diesel fuel and install the new fuel filter. Tighten the fuel filter in accordance with the instructions on the fuel filter.
5 If necessary, vent the fuel system, please refer to Bleeding the Fuel System page 55.
Fuel Pre-filter, Change

1. Undo the cable from the water trap sensor.
2. Remove the water trap filter from the filter housing. Collect any spilled fuel in a container.
3. Remove the lower part of the water trap from the filter.
4. Clean the lower part of the water trap with a soft rag. Check that the drain hole in the lower part is not blocked.
5. Install a new seal on the lower part and lubricate the seal with diesel fuel. Re-install the lower part of the filter.
6. Lubricate the seal with diesel fuel. Screw the filter onto the filter bracket by hand until the rubber seal just touches the mating surface. Then tighten a further half turn, no more.
7. Connect the cable to the water trap sensor.
8. If necessary, vent the fuel system, please refer to *Bleeding the Fuel System page 55.*

Draining condensate, fuel system

NOTICE! Put a collection vessel under the fuel filter to collect the condensate and fuel.

1. Open the drain nipple (1) in the base of the fuel pre-filter.
2. Tighten the drain tap (1) when fuel without water starts to run out.

Bleeding the Fuel System

The system does not need to be purged unless it has been run completely dry. Purging is then done with the hand pump on the fuel filter bracket.
Cooling System

The engine’s internal cooling system makes sure the engine works at the right temperature. It is a closed system that must always be filled with a mixture of concentrated coolant and water in order to protect the engine against internal corrosion, cavitation and bursting due to freezing.

Coolant of a suitable chemical composition must be used all year round. This also applies in areas where there is never any risk of freezing, to provide the engine with full corrosion protection. The use of anti-corrosion agents alone is not permitted in Volvo Penta engines. Never use water alone as a substitute for coolant.

The corrosion protection additives become less effective over time, which means that the coolant must be changed at regular intervals; refer to Maintenance Schedule. The cooling system must be flushed whenever the coolant is changed; refer to the Cooling System, Cleaning page 61 section.

Volvo Penta coolants have been prepared to work best with Volvo Penta engines and offer excellent protection against corrosion, cavitation damage, and bursts due to freezing. Only coolants of this quality are adapted to, and approved by, Volvo Penta.

IMPORTANT!

Volvo Penta engines are delivered with either Volvo Penta Coolant (green) or Volvo Penta Coolant VCS (yellow); both are available as concentrates and Ready Mixed.

We recommend that the coolant supplied with the engine on delivery be used. Future warranty claims related to engine and accessories may be denied if an unsuitable coolant has been used, or if the instructions for coolant mixture have not been followed. Engines using yellow Volvo Penta Coolant VCS must have a yellow decal with the text VOLVO COOLANT VCS on the expansion tank.

- The two types of Volvo Penta coolant may never be mixed with each other as this will affect the anti-corrosion properties.
- Coolant filters may not be used together with Volvo Penta Coolant VCS.

Ready Mixed

The ready-mixed coolant protects the engine from corrosion damage, cavitation damage and bursts due to freezing down to
-28 °C (-18 °F) Volvo Penta Coolant (green).
-24 °C (-11 °F) for Volvo Penta Coolant VCS (yellow).
Coolant, Mixing

⚠️ WARNING!
All coolant is hazardous and harmful to the environment. Do not consume. Coolant is flammable.

IMPORTANT:
Never race the engine when it is cold.

The concentrated coolant must be mixed with pure water (distilled or de-ionized water) according to specifications; refer to Water Quality page 73.

Mix: 40% concentrated coolant and 60% water
This mixture prevents against internal corrosion, cavitation and bursts due to freezing down to
-28°C (-18°F) Volvo Penta Coolant (green).
-24°C (-11°F) Volvo Penta Coolant VCS (yellow).

At 60% glycol concentration, the freezing point is lowered to
-54°C (-65°F) Volvo Penta Coolant (green).
-46°C (-51°F) Volvo Penta Coolant VCS (yellow).

Never mix in more than 60% of the concentrated coolant. A greater volume of concentrate entails a reduced cooling effect with the risk for overheating and reduced anti-freeze protection.
It is extremely important that the system be filled with the correct coolant concentration. Mix in a separate clean vessel before filling the cooling system. Make sure that the liquids mix.
Coolant Level, Checking and Topping Up

⚠️ WARNING!
Do not open the coolant filler cap when the engine is warm, except in emergencies, this could cause serious personal injury. Steam or hot fluid could spray out.

IMPORTANT!
Filling of coolant must be performed with the engine stopped. Fill up slowly, to allow the air to flow out.

Coolant Level, Checking and Topping Up

NOTICE! Only use coolant recommended by Volvo Penta.

NOTICE! Open only the filler cap (1). Do not open the pressure cap (2).

NOTICE! TWD1643GE: The cap (2) is both filler cap and pressure cap.

Check the coolant level daily before starting.

1 Check that the coolant level is above the MIN mark on the expansion tank.

2 Top up with coolant as required, so that the level is between the MIN and MAX marks.

TWD1643GE: Fill the expansion tank to the MAX mark on the sight glass.
Filling a completely empty system

NOTICE! Mix the correct amount of coolant in advance, to ensure that the cooling system is completely filled. Refer to *Technical Data page 73* for the correct coolant volume.

NOTICE! Do not start the engine until the system is purged and completely filled.

1. Check that all drain points are closed.
2. Open filler cap (1). Do not open the pressure cap (2).
3. Fill with coolant, so that the level is between the MIN and MAX marks.
4. Start the engine when the cooling system has been completely filled and vented. Open any venting taps a short while after starting, to allow trapped air to escape. If a heating unit is connected to the engine cooling system, the heat control valve should be opened and the installation vented during filling.
5. Stop the engine after about an hour and check the coolant level. Top up as necessary.

TWD1643GE

1. Open the caps to both the expansion tank (1) and radiator (2).
2. Fill coolant into the expansion tank until it is completely full.
3. Fill the radiator. Vent via the venting nipple (3).
4. Top up until the system is completely full. Refer to *Technical Data page 73* for the correct coolant volume.

NOTICE! Do not start the engine until the system is purged and completely filled.
Coolant, Draining

WARNING!
Do not open the coolant filler cap when the engine is warm, except in emergencies, this could cause serious personal injury. Steam or hot fluid could spray out.

IMPORTANT!
On engines which are to be put in storage, the engine cooling system should **not** be drained. The coolant contains corrosion inhibiting additives.

1. Stop the engine before draining the cooling system and remove the expansion tank cap.
2. Remove the filler cap (1).

NOTICE! Do not open pressure cap (2).

NOTICE! On TWD1643GE both the pressure cap on the expansion tank (1) and the filler cap on the radiator (2) are opened.

3. Open all drain points. Drain the coolant from the radiator and engine block, using the drain hose. The drain nipples are situated under the radiator on the right side of the engine block.
4. Check that all coolant drains out. Deposits may be found inside the drain plug/tap, and need to be cleared away. There is otherwise a risk that coolant could remain and cause frost damage. Check whether the installation has any further taps or plugs at the lowest points of the cooling water pipes.
5. Shut any taps and check that the spring-loaded covers on the nipples close completely. Install the rubber plugs.

Charge Air Cooler, External Cleaning

Remove guards as necessary, to access the radiator. Clean with water and a mild detergent. Use a soft brush. Be careful not to damage the radiator vanes. Reinstall removed parts.

IMPORTANT!
Do not use a pressure washer.
Coolant Filter, Change

NOTICE! Only applies to engines using Volvo Penta Coolant (green). Engines using Volvo Penta Coolant VCS are not fitted with coolant filters.

1. Turn the tap (1) 90° to stop the flow through the coolant filter.
2. Remove the coolant filter with a suitable extractor. Make sure that no residue from the old seal remains in the housing.
3. Put a thin layer of engine oil on the new coolant filter seal. Screw the coolant filter on by hand until the seal comes into contact with the mating surface of the filter bracket. Then tighten the coolant filter a further 1/2 turn.
4. Turn the tap (1) 90° to release the flow through the coolant filter again.
5. Start the engine and perform a leakage check.
6. Switch the engine off and check the coolant level. Refer to Coolant Level, Checking and Topping Up page 58.

Cooling System, Cleaning

Cooling performance is reduced by deposits in the radiator and cooling galleries. The cooling system should be cleaned out when the coolant is changed.

IMPORTANT!
Cleaning must not be done if there is any risk of the cooling system freezing, since the cleaning solution does not have any frost prevention ability.

IMPORTANT!
It is extremely important that the correct concentration and volume of coolant is put in the system. Mix in a separate clean vessel before filling the cooling system. Make sure that the liquids mix.

1. Empty the cooling system. Refer to Coolant, Draining page 60.
2. Put a hose into the expansion tank filling hole and flush with clean water, as specified by Volvo Penta—refer to section Water quality in Technical Data page 73 until the water draining out is completely clear.
3. If there should still be some contamination left after flushing for a long time, cleaning can be done with coolant. Otherwise, continue as in item 8 below.
4. Fill the cooling system with 15-20 % mixture of concentrated coolant. Use only Volvo Penta recommended concentrated coolant mixed with clean water.
5 Drain the coolant after 1-2 days of operation. Remove the filler cap and possibly the lower radiator hose to increase the speed of emptying. To prevent suspended material from settling back in the system, emptying should be done rapidly, within the space of 10 minutes, when the engine has not been standing still for a long time.

6 Flush the system immediately and thoroughly with clean hot water to prevent dirt from settling in the inner areas. Flush until the water that runs out is completely clean. Make sure that any heater controls are set to full heating during emptying.

7 If contamination should still be left after a long period of flushing, you can do a cleanout with Volvo Penta radiator cleaner, followed by finishing-off with Volvo Penta neutralizer. Carefully follow the instructions on the package. Otherwise, continue as in item 8 below.

8 When the cooling system is completely free from contamination, close the drain taps and plugs.

9 Fill up with Volvo Penta recommended coolant, following the instructions in the chapters entitled Maintenance page 56 and Coolant Level, Checking and Topping Up page 58.
Cooling air filter

⚠️ WARNING!
Stop the engine before doing any maintenance work.

A newly-installed cooling air filter reduces cooling performance by 4%.

Installation
1. Slide one half of the filter over the fan cover (as in fig.1).
2. Turn the half filter until it is able to hang loosely on the fan cover (see fig. 2).
3. Slide on the other filter half and secure the two halves together with self-affixing velcro tape (as in fig. 3a).
4. Fasten the outer velcro tape around the fan cover guard (as in fig. 3b and 3c).

Removal and cleaning
1. Remove the cooling filter.
2. Brush away any heavy dirt with a soft brush.
3. Rinse the filter with water.

NOTICE! If a cleaning agent is necessary, an eco-friendly degreaser (e.g. coconut oil based) must be used as a first choice. Alternatively, use a paraffin fraction as a second choice. Spray on the degreaser or apply it using a sponge. Allow it to act for a few minutes and then rinse with tap water.

IMPORTANT!
Do not use gasoline, steam, a high-pressure washer or other cleaning agents.

4. Re-install the filter according to instructions.
Electrical System

The engine is equipped with a 2-pole electrical system and an alternator. System voltage is 12V or 24V.

⚠️ WARNING!
Always stop the engine and break the current using the main switches before working on the engine.

Main switch

IMPORTANT!
Never disconnect the current with the main switches when the engine is running, the alternator and electronics could be damaged.

The main switches must never be switched off before the engine has stopped. If the circuit between the alternator and the battery is disconnected when the engine is running, the alternator and electronics can be damaged. For the same reason the charging circuits must never be re-connected with the engine running.

Fuses

The engine is equipped with a 10 A circuit breaker which cuts the current if overloaded.

The circuit breaker is located on the left-hand side of the engine Location of Sensors page 45.

The engine stops if the fuse trips. If the circuit breaker trips frequently, an authorized Volvo Penta workshop should be contacted to investigate the cause of the overload.

Electrical Connections

Check that electrical connections are dry, free from oxide, and that they are securely tightened.
Battery, Maintenance

⚠️ WARNING!
Risk of fire and explosion. Never allow an open flame or electric sparks near the battery or batteries.

⚠️ WARNING!
Never confuse the positive and negative poles on the batteries. Risk of arcing and explosion.

⚠️ WARNING!
The battery electrolyte contains extremely corrosive sulfuric acid. Protect your skin and clothes when charging or handling batteries. Always use protective goggles and gloves. If battery electrolyte comes into contact with unprotected skin wash off immediately using plenty of water and soap. If battery acid comes in contact with the eyes, flush immediately with plenty of water and obtain medical assistance without delay.

Connecting and disconnecting the battery

Connecting
1. Connect the + cable (red) to the + pole on the battery.
2. Connect the – cable (black) to the – pole on the battery.

Disconnecting
1. Remove the – cable (black).
2. Remove the + cable (red).

Cleaning
Keep the batteries clean and dry. Contamination and oxide on the batteries and battery poles can cause stray currents, voltage drop and discharge, especially in wet weather. Remove oxidation from the battery poles and terminals, using a brass brush. Tighten the terminals securely and grease them with terminal grease or petroleum jelly.

Filling
The electrolyte level should be 5–10 mm (0.2– 0.4”) above the cell plates in the battery. Top up with distilled water as required.

After filling, the battery should be charged for at least 30 minutes by running the engine at idle.

Some maintenance-free batteries have special instructions, which must be followed.
Battery, Charging

⚠️ WARNING!
Risk of fire and explosion. Never allow an open flame or electric sparks near the battery or batteries.

⚠️ WARNING!
The battery electrolyte contains extremely corrosive sulfuric acid. Protect your skin and clothes when charging or handling batteries. Always use protective goggles and gloves. If battery electrolyte comes into contact with unprotected skin wash off immediately using plenty of water and soap. If battery acid comes in contact with the eyes, flush immediately with plenty of water and obtain medical assistance without delay.

⚠️ WARNING!
Never confuse the positive and negative poles on the batteries. Risk of arcing and explosion.

IMPORTANT!
Observe the instruction manual for the battery charger carefully. To avoid the risk of electrochemical corrosion when an external charger is connected, the battery cables should be removed from the batteries before the charger is connected. Always switch off the charging current before the charging clips are removed.

- Charge batteries if they have become discharged. During charging, unscrew the cell plugs but leave them in the plug holes. Ventilate well, especially if the batteries are charged in an enclosed space.

- If the engine is not used for a longer period of time, the batteries should be fully charged, then possibly trickle charged (please refer to the battery manufacturer’s recommendations). Batteries are damaged by being left discharged, and can also freeze and burst easier in cold weather.

- Special instructions apply to **boost charging**. Boost charging can shorten battery life, and should therefore be avoided.
Storage

The engine and other equipment must be laid up to prevent damage if they are not used for two months or more. It is important that this is done in the correct manner, and nothing is forgotten. For this reason, we have compiled a check list of the most important points.

Before the engine is taken out of service for a long period of time, an authorized Volvo Penta workshop should check it over. Have any faults and deficiencies attended to, so that the equipment is in order, ready for the next start.

⚠️ CAUTION!
Read the chapter on Maintenance before starting work. It contains instructions on how to carry out maintenance and service operations in a safe and correct manner.

⚠️ WARNING!
Conservations oils can be flammable and dangerous to breathe. Ensure good ventilation. Use a protective face mask when spraying.

IMPORTANT!
Remember the following when washing with a high pressure washer: Never aim the water jet at seals, rubber hoses or electrical components.

- **For up to 8 month’s stoppage:**
 Change the oil and oil filter on the engine, then warm it up afterwards.

- **More than 8 month’s stoppage:**
 Conserve the lubrication and fuel systems with conservation oil. Please refer section Conservation of the lubrication and fuel systems for more than 8 months’ stoppage.

- Check that the coolant offers sufficient frost protection. Top up as necessary. Alternatively, you can drain the coolant (also drain the coolant filter).

- Drain any water and contamination from the fuel filters and fuel tank. Fill the fuel tank completely, to avoid condensation.

- Disconnect the battery cables, clean and charge the batteries. Trickle charge the batteries while the equipment is in storage. A poorly charged battery can freeze and burst.

- Clean the outside of the engine. Do not use a high pressure washer for engine cleaning. Touch up paint damage with Volvo Penta original paint.

- Spray the components of the electrical system with water-repellent spray.

- Check and rust-proof any control cables.

- Put a note on the engine with the date, type of conservation and the conservation oil used.

- Cover over the air filter, exhaust pipe and engine if necessary.
Bringing out of storage

- Remove any covers from the engine, air filter and exhaust pipe.
- Put the correct grade of oil into the engine, if necessary, refer to Technical Data, Lubrication System. Install a new oil filter if the filter was not changed during conservation.
- Install new fuel filters and vent the fuel system.
- Check the drive belt(s).
- Check the condition of all rubber hoses, and retighten the hose clamps.
- Close the drain taps and install any drainplugs.
- Check the coolant level. Top up as necessary.
- Connect the fully charged batteries.
- Start the engine and warm it up at fast idle with no loading.
- Check that no oil, fuel or coolant leakage occurs.

Conservation of the lubrication and fuel systems for more than 8 months’ stoppage:

- Drain the engine oil and fill up with conservation oil* to just over the MIN marking on the dipstick.
- Connect the fuel suction and return hoses to a 1/3 full jerrican containing conservation oil* and 2/3 diesel fuel.
- Vent the fuel system.
- Start the engine and run at a fast idle about 2 liters (0.6 US gals) of the fluid in the jerrican have been used. Stop the engine and connect the ordinary fuel pipes.
- Drain the engine’s conservation oil.
- Follow the other instructions on the previous page.

* Conservation oils are sold by oil companies.
Technical Data

Engines

<table>
<thead>
<tr>
<th>Type designation</th>
<th>TAD1640GE</th>
<th>TAD1641GE</th>
<th>TAD1642GE</th>
<th>TWD1643GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power, prime/stand-by</td>
<td>Refer to the sales literature</td>
</tr>
<tr>
<td>No. of cylinders</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Bore, mm (inch)</td>
<td>144 (5.67)</td>
<td>144 (5.67)</td>
<td>144 (5.67)</td>
<td>144 (5.67)</td>
</tr>
<tr>
<td>Stroke, mm (inch)</td>
<td>165 (6.50)</td>
<td>165 (6.50)</td>
<td>165 (6.50)</td>
<td>165 (6.50)</td>
</tr>
<tr>
<td>Displacement, liter (inch³)</td>
<td>16,12 (983.9)</td>
<td>16,12 (983.9)</td>
<td>16,12 (983.9)</td>
<td>16,12 (983.9)</td>
</tr>
<tr>
<td>Weight, dry, kg (lb)</td>
<td>1440 (3175)</td>
<td>1440 (3175)</td>
<td>1480 (3263)</td>
<td>1700 (3748)</td>
</tr>
<tr>
<td>Weight, wet, kg (lb)</td>
<td>1510 (3329)</td>
<td>1510 (3329)</td>
<td>1550 (3417)</td>
<td>1770 (3902)</td>
</tr>
<tr>
<td>Firing order</td>
<td>1-5-3-6-2-4</td>
<td>1-5-3-6-2-4</td>
<td>1-5-3-6-2-4</td>
<td>1-5-3-6-2-4</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>17,5:1</td>
<td>16,5:1</td>
<td>16,5:1</td>
<td>16,5:1</td>
</tr>
<tr>
<td>Low idle, r/min.</td>
<td>900</td>
<td>900</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>High idle, rpm</td>
<td>1500/1800</td>
<td>1500/1800</td>
<td>1500/1800</td>
<td>1500/1800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type designation</th>
<th>TAD1650GE</th>
<th>TAD1651GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power, prime/stand-by</td>
<td>Refer to the sales literature</td>
<td>Refer to the sales literature</td>
</tr>
<tr>
<td>No. of cylinders</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Bore mm (inch)</td>
<td>144 (5.67)</td>
<td>144 (5.67)</td>
</tr>
<tr>
<td>Stroke mm (inch)</td>
<td>165 (6.50)</td>
<td>165 (6.50)</td>
</tr>
<tr>
<td>Displacement liter (inch³)</td>
<td>16,12 (983.9)</td>
<td>16,12 (983.9)</td>
</tr>
<tr>
<td>Weight, dry, kg (lb)</td>
<td>1440 (3175)</td>
<td>1480 (3263)</td>
</tr>
<tr>
<td>Weight, wet, kg (lb)</td>
<td>1510 (3329)</td>
<td>1550 (3417)</td>
</tr>
<tr>
<td>Firing order</td>
<td>1-5-3-6-2-4</td>
<td>1-5-3-6-2-4</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>16,5:1</td>
<td>16,5:1</td>
</tr>
<tr>
<td>Low idle, r/min.</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>High idle, rpm</td>
<td>1500/1800</td>
<td>1500/1800</td>
</tr>
<tr>
<td>Type designation</td>
<td>TAD1640VE-B</td>
<td>TAD1641VE</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Power, prime/stand-by</td>
<td>Refer to the sales literature</td>
<td>Refer to the sales literature</td>
</tr>
<tr>
<td>Torque, Prime/Standby</td>
<td>Refer to the sales literature</td>
<td>Refer to the sales literature</td>
</tr>
<tr>
<td>No. of cylinders</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Bore mm (inch)</td>
<td>144 (5.67)</td>
<td>144 (5.67)</td>
</tr>
<tr>
<td>Stroke mm (inch)</td>
<td>165 (6.50)</td>
<td>165 (6.50)</td>
</tr>
<tr>
<td>Displacement liter (inch³)</td>
<td>16,12 (983.9)</td>
<td>16,12 (983.9)</td>
</tr>
<tr>
<td>Weight, dry kg (lb)</td>
<td>1480 (3263)</td>
<td>1480 (3263)</td>
</tr>
<tr>
<td>Weight, wet kg (lb)</td>
<td>1550 (3417)</td>
<td>1550 (3417)</td>
</tr>
<tr>
<td>Firing order</td>
<td>1-5-3-6-2-4</td>
<td>1-5-3-6-2-4</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>17,5:1</td>
<td>17,5:1</td>
</tr>
<tr>
<td>Low idle, r/min.</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>High idle, rpm</td>
<td>1800</td>
<td>1800</td>
</tr>
</tbody>
</table>
Lubrication System

Oil

<table>
<thead>
<tr>
<th>Change volume, including filter change</th>
<th>48 liter (12.68 US gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAD1650VE</td>
<td>53 liter (14 US gal)</td>
</tr>
</tbody>
</table>

Oil pressure, hot engine

<table>
<thead>
<tr>
<th>at operating speed</th>
<th>300-650 kPa (44–94 psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAD1650VE</td>
<td>400–650 kPa (58–94 psi)</td>
</tr>
</tbody>
</table>

Oil filter

| Full flow filter | 2 |
| By-pass filter | 1 |

Lube oil pump

<table>
<thead>
<tr>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear driven</td>
</tr>
</tbody>
</table>

Oil recommendations

<table>
<thead>
<tr>
<th>Sulfur content in fuel, by weight</th>
<th>VDS-3</th>
<th>VDS-2</th>
<th>Oil change interval: Reached first in operation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 0.5 %</td>
<td></td>
<td></td>
<td>600 hrs / 12 month</td>
</tr>
<tr>
<td>0.5 – 1.0 %</td>
<td></td>
<td></td>
<td>300 hrs / 12 month</td>
</tr>
<tr>
<td>more than 1.0 % 1)</td>
<td></td>
<td></td>
<td>150 hrs / 12 month</td>
</tr>
</tbody>
</table>

NOTICE! Mineral based oil, as well as fully or semi-synthetic, can be used on condition that it complies with the quality requirements above.

1) If sulfur content is > 1.0 % by weight, use oil with TBN > 15.

2) The oil must also comply with at least one of the following specifications ACEA:E7, ACEA:E5, Global DHD-1, API:CI-4 or API:CH-4.

VDS = Volvo Drain Specification

ACEA = Association des Constructeurs Européenne d’Automobiles

API = American Petroleum Institute Global

DHD = Global Diesel Heavy Duty

TBN = Total Base Number

Viscosity

Select the viscosity according to the table.

The temperature values refer to stable ambient temperatures.

* SAE 5W/30 refers to synthetic or semi-synthetic oils.
Fuel System

<table>
<thead>
<tr>
<th>Feed pump</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed pressure at 600 rpm</td>
<td>min 100 kPa (14.5 psi)</td>
</tr>
<tr>
<td>Feed pressure at 1200 rpm</td>
<td>min 300 kPa (43.5 psi)</td>
</tr>
<tr>
<td>Feed pressure at full load</td>
<td>min 300 kPa (43.5 psi)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bypass valve</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening pressure</td>
<td>400-550 kPa (58–80 psi)</td>
</tr>
</tbody>
</table>

Fuel specification
The fuel must comply with national and international standards for commercially supplied fuels, such as:
EN 590 (with nationally adapted environmental and cold weather requirements)
ASTM D 975 No 1-D och 2-D
JIS KK 2204
Sulfur content: Complying with legal requirements in each country. If the sulfur content exceeds 0.5 weight-
percent, the oil change intervals shall be changed, refer to Technical Data page 71.

Extremely low sulfur content fuel (urban diesel in Sweden and city diesel in Finland) can cause a loss of up to 5
% of power and an increase in fuel consumption of about 2-3 %.

Biodiesel (FAME)
Vegetable oil esters (Fatty Acid Methyl Esters, FAME), also called "biodiesel", are increasingly available as a
blending component in diesel fuels. Volvo Penta accepts the same FAME content as in major on-road fuels EN
590 and ASTM D975; i.e. today up to 7%, without any specific additional service requirements. Please contact
your Volvo Penta Dealer for further information.

For engines produced after 1 Jan 2009 Volvo Penta accepts, with specific service requirements,
• max 30% FAME blend (FAME component in accordance with EN 14214 and diesel fuel in accordance with
EN 590)
• max 20% FAME blend (FAME component in accordance with ASTM D6751 and diesel fuel in accordance
with ASTM D975)

NOTICE!
Higher FAME blends will negatively impact performance, emissions and fuel consumption. Furthermore the func-
tion of the Stage 3B engine exhaust aftertreatment system will be negatively affected.

NOTICE!
Engines for emergency applications, e.g. genset standby, must only run with market diesel fuel with minimum
FAME content.

NOTICE!
Tier 4i engines must only run with market diesel fuel.

NOTICE!
In case of cold starting problems shift to diesel fuel. Do not to use FAME below -10°C.

NOTICE!
Raw vegetable or animal oils do not meet EN 14214 and are not allowed as fuels or fuel blending components.
Cooling System

<table>
<thead>
<tr>
<th>Type</th>
<th>Pressurized, sealed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure cap, max. opening pressure</td>
<td>75 kPa (10.88 PSI)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coolant quantity (engine):</th>
<th>33 liter (8.72 US gallon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant quantity (engine, radiator and hoses):</td>
<td></td>
</tr>
<tr>
<td>TAD1640–42GE, TAD1641–43VE, TAD1650VE, TAD1650–51GE</td>
<td>60 liter (15.85 US gallon)</td>
</tr>
<tr>
<td>TWD1643GE</td>
<td>95 liter (25.1 US gallon)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermostat, quantity</th>
<th>1 pc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermostat, opening temperature:</td>
<td></td>
</tr>
<tr>
<td>TAD1640–42GE, TAD1641–43VE</td>
<td>86 °C (186.8 °F)</td>
</tr>
<tr>
<td>TAD1650VE, TWD1643GE</td>
<td>82 °C (179.6 °F)</td>
</tr>
</tbody>
</table>

Coolant

Volvo Penta Coolant VCS and VCS Ready Mixed (yellow colour) are based on Organic Acid Technology, OAT.

Volvo Penta Coolant and Coolant Ready Mixed (green colour) are silicate based.

Water Quality

ASTM D4985:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total solid particles</td>
<td><340 ppm</td>
</tr>
<tr>
<td>Total hardness</td>
<td><9.5° dH</td>
</tr>
<tr>
<td>Chloride</td>
<td><40 ppm</td>
</tr>
<tr>
<td>Sulfate</td>
<td><100 ppm</td>
</tr>
<tr>
<td>pH value</td>
<td>5.5–9</td>
</tr>
<tr>
<td>Silica (acc. ASTM D859)</td>
<td><20 mg SiO₂/l</td>
</tr>
<tr>
<td>Iron (acc. ASTM D1068)</td>
<td><0.10 ppm</td>
</tr>
<tr>
<td>Manganese (acc. ASTM D858)</td>
<td><0.05 ppm</td>
</tr>
<tr>
<td>Conductivity (acc. ASTM D1125)</td>
<td><500 μS/cm</td>
</tr>
<tr>
<td>Organic content, COD₄₉₉ (acc. ISO8467)</td>
<td><15 mg KMnO₄/l</td>
</tr>
</tbody>
</table>
Electrical System

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>System voltage</td>
<td>24V</td>
</tr>
<tr>
<td>Alternator</td>
<td></td>
</tr>
<tr>
<td>voltage/max. current</td>
<td>28V/80A</td>
</tr>
<tr>
<td>power app.</td>
<td>2200W</td>
</tr>
<tr>
<td>Alternative generating equipment (optional)</td>
<td></td>
</tr>
<tr>
<td>voltage/max. current</td>
<td>28V/110A</td>
</tr>
<tr>
<td>power app.</td>
<td>2800W</td>
</tr>
<tr>
<td>Battery capacity</td>
<td>2 pcs. series connected 12 V, max. 220 Ah</td>
</tr>
<tr>
<td>Battery electrolyte density at +25°C °</td>
<td></td>
</tr>
<tr>
<td>fully charged battery</td>
<td>1,28 g/cm³ (1,24 g/cm³)*</td>
</tr>
<tr>
<td>recharge battery at</td>
<td>1,20 g/cm³ (1,20 g/cm³)*</td>
</tr>
</tbody>
</table>

* Note. Applies to batteries with tropical acid.
Identification Numbers

1. Chassis and serial number

2. Engine designation
 A. Engine designation
 B. Engine power, net, (without fan)
 C. Max. engine speed
 D. Main software
 E. Dataset 1
 F. Dataset 2
 G. Product number

3. Engine designation
 1. Engine designation
 2. Serial number
 3. Specification number
Declaration for the installation of partially-completed machinery in accordance with
Machinery Directive 2006/42/EC

Engine Manufacturer:
AB Volvo Penta
Gropegårds gate
SE 405 08 Göteborg
Sweden

Description of engine: 4-cycle diesel engine

Engine types covered by this declaration:

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>TAD1640VE-B</th>
<th>TAD1641VE-B</th>
<th>TAD1642VE-B</th>
<th>TAD1640GE</th>
<th>TAD1641GE</th>
<th>TAD1642GE</th>
<th>TWD1643GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAD1641VE</td>
<td>TAD1640VE-B</td>
<td>TAD1641VE-B</td>
<td>TAD1640GE</td>
<td>TAD1641GE</td>
<td>TAD1642GE</td>
<td>TWD1643GE</td>
<td></td>
</tr>
<tr>
<td>TAD1642VE</td>
<td>TAD1642VE-B</td>
<td>TAD1642VE-B</td>
<td>TAD1642GE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAD1643VE</td>
<td>TAD1643VE</td>
<td></td>
<td>TAD1642GE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAD1650VE</td>
<td></td>
<td></td>
<td>TAD1642GE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fundamental health and safety requirements applied to, and fulfilled by, the above-mentioned engines are described in the following items in Annex I: 1.1.3, 1.1.5, 1.5.1, 1.5.2, 1.5.3, 1.5.4, 1.5.6, 1.5.13, 1.6.1, 1.6.2, 1.6.4, 1.7.1, 1.7.1.1, 1.7.1.2, 1.7.4, 1.7.4.1 and 1.7.4.3.

The relevant technical documentation is compiled as described in part B of Annex VII.

Relevant information concerning the partially-completed machinery will be provided in suitable form upon justified requests from competent national authorities. The individual authorized to compile the relevant technical documentation is the signer of this declaration.

The harmonizing standards applied are:
EN ISO 12100-1: Safety of machinery - Basic concepts, general principles for design - Part 1: Basic terminology, methodology
EN ISO 12100-2: Safety of machinery - Basic concepts, general principles for design - Part 2: Technical principles
EN 1679-1: Reciprocating internal combustion engines - Safety - Part 1: Compression ignition engines

The partially-completed machinery also complies with the following relevant Directive:
Applied Standards: EN 61000-6-1, EN 61000-6-2, EN 61000-6-3, EN 61000-6-4, EN 12895, EN-ISO 14982 and EN 13309

These engines may not be put into operation before the completed machinery into which they are to be installed has been declared to conform with the provisions of Machinery Directive 2006/42/EC.

Name and function: Jennifer Åhlberg, Laws and Regulation (the identity of the individual authorized to sign on behalf of the engine manufacturer or the latter's authorized representative).

Signature and title:

Date and place of issue: (yyyy/mm/dd) 2012/04/17 Gothenburg
Alphabetical index

A	After Engine Shutdown .. 28
	Air Filter, Check and Change 48
	Alarms ... 26
	Alternator Belt, Change ... 50
	Battery, Charging .. 66
	Battery, Maintenance .. 65
	Before Engine Shutdown ... 28
	Before Starting .. 22
	Bleeding the Fuel System ... 55
	Charge Air Cooler, External Cleaning 60
	Charge Air Pipe, Leakage Check.................................. 49
	CIU (Control Interface Unit) 21
	Coolant Filter, Change .. 61
	Coolant Level, Checking and Topping Up 58
	Coolant, Draining ... 60
	Cooling air filter ... 63
	Cooling System, Cleaning ... 61
	DCU (Display Control Unit) ... 11, 23
	Declaration of Conformity ... 76
	Draining condensate, fuel system 55
	Drive Belt and Alternator Belt, Inspection 49
	Drive Belt, Change .. 51
	DU (Display Unit) ... 17
	Easy Link Instruments ... 21
	Electrical Connections ... 64
	EMS (Engine Management System) 10, 23
	Engine Fuel Filter Replacement 54
	Engine Oil, Change ... 53
	Engine, General .. 48
	Engines ... 9, 69
	Erasing fault codes .. 35
	Extra Stop .. 29
	Fuel Pre-filter, Change .. 55
	Fuel System .. 54, 72
	Identification Numbers .. 75
	Location of Sensors ... 45, 46, 47
	Lubrication System ... 52, 71
	Main switch .. 64
	Maneuvering .. 27
	Never Use Start Spray ... 24
	Oil Filter/By-pass Filter, Change 53
	Operation at low load ... 27
	Orientation ... 42
	Reading the Instruments ... 26
	Service program ... 39
	Starting in Extreme Cold .. 24
	Starting the Engine .. 23
	Starting Using Auxiliary Batteries 25
	Stop the Engine .. 28
	Viscosity ... 71
	Water Quality ... 73