CURSOR TIER 3 SERIES

Industrial application

C87 C87 ENT X - CURSOR 87 TE X

Technical and Repair manual

This publication provides unit and relevant component repair data, specifications, instructions and methodologies.

This publication has been drawn up for qualified and specialised personnel.

Before performing any operation check that the part relevant to the unit on which you must work is available along with all safety devices for accident-prevention, such as, goggles, helmet, gloves, shoes, etc. and hoisting and transporting equipment.

Operations are to be performed by following the indications included here, using the special equipment indicated and assuring proper repair, compliance with schedule and operator's safety requirements.

Each repair must aim to restore operating efficiency and safety in compliance with the FPT provisions.

FPT cannot be held liable for modifications, alterations or other interventions non authorised by FPT on the vehicle and if the unit is warranted the above mentioned interventions will cause its expiration.

FPT is not liable for repairing interventions.

FPT will provide further details required to carry out the interventions and all the instructions that are not included on this publication.

Data included in this publication may not be up-to-date therefore subject to Manufacturer's modifications that can be added at any time for technical or commercial purposes and also to meet new law regulations in other Countries.

If issues on this publication differ from what is actually noticed on the unit, please get in touch with the FPT network before starting any intervention".

It is forbidden to copy this text or any of its parts and all illustrations included.

Publication edited by
FIAT Powerrtrain Technologies
Mkt. Advertising & Promotion
Viale dell'Industria, 15/17
20010 Pregnana Milanese
Milano (Italy)
Print **P2D32C006E** - 3rd Ed. 05.2010

Produced by:

B.U. TECHNICAL PUBLISHING lveco Technical Publications Lungo Stura Lazio, 15/19 10156 Turin - Italy

F2C CURSOR ENGINES

Cursor F2C Part I

Cursor engines application G-Drive Part 2

Introduction	
	Page
PREFACE TO USER'S GUIDELINE MANUAL	3
SYMBOLS	3
☐ Warnings	3
Service operations	3
GENERAL WARNINGS	5
GENERAL WARNINGS ON THE ELECTRIC SYSTEM	7
Bonding and screening	8
CONVERSIONS BETWEEN THE MAIN UNITS OF MEASUREMENT OF THE INTERNATIONAL SYSTEM AND MOST USED DERIVED QUANTITIES	9
KEY OF LECTURE OF THE HEADINGS AND FOOTNOTES	10

2 INTRODUCTION F2C CURSOR ENGINES

F2C CURSOR ENGINES INTRODUCTION 3

PREFACE TO USER'S GUIDELINE MANUAL

Manuals for repairs are split into Parts and Sections, each one of which is marked by a numeral; the contents of these sections are indicated in the general table of contents.

The sections dealing with things mechanic introduce the specifications, tightening torque values, tool lists, assembly detaching/reattaching operations, bench overhauling operations, diagnosis procedures and maintenance schedules.

The sections (or parts) of the electric/electronic system include the descriptions of the electric network and the assembly's electronic systems, wiring diagrams, electric features of components, component coding and the diagnosis procedures for the control units peculiar to the electric system.

Section I describes the engine illustrating its features and working in general.

Section 2 describes the type of fuel feed.

Section 3 relates to the specific duty and is divided in four separate parts:

- I. Mechanical part, related to the engine overhaul, limited to those components with different characteristics based on the relating specific duty.
- 2. Electrical part, concerning wiring harness, electrical and electronic equipment with different characteristics based on the relating specific duty.
- 3. Maintenance planning and specific overhaul.
- 4. Troubleshooting part dedicated to the operators who, being entitled to provide technical assistance, shall have simple and direct instructions to identify the cause of the major inconveniences.

Sections 4 and 5 illustrate the overhaul operations of the engine overhaul on stand and the necessary equipment to execute such operations.

The appendix contains a list of the general safety regulations to be respected by all installation and maintenance engineers in order to prevent serious accidents taking place.

The manual uses proper symbols in its descriptions; the purpose of these symbols is to classify contained information. In particular, there have been defined a set of symbols to classify warnings and a set for assistance operations.

SYMBOLS - Warnings

Danger for persons

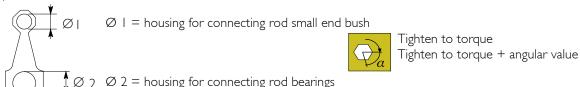
Missing or incomplete observance of these prescriptions can cause serious danger for persons' safety.

Danger of serious damage for the assembly

Failure to comply, both fully or in part, with such prescriptions will involve serious damage to the assembly and may sometimes cause the warranty to become null and void.

General danger

It includes the dangers of above described signals.


Environment protection

Moreover, it describes the correct actions to be taken to ensure that the assembly is used in such a way so as to protect the environment as much as possible.

NOTE It indicates an additional explanation for a piece of information.

Service operations

Example

INTRODUCTION F2C CURSOR ENGINES

4

	Removal Disconnection		Intake
•	Refitting Connection		Exhaust
==	Removal Disassembly	\Leftrightarrow	Operation
	Fitting in place Assembly	Q	Compression ratio
	Tighten to torque	-	Tolerance Weight difference
\bigcirc_a	Tighten to torque + angle value	+	Rolling torque
•	Press or caulk		Rotation
878	Regulation Adjustment		Angle Angular value
<u> </u>	Warning Note		Preload
	Visual inspection Fitting position check		Number of revolutions
	Measurement Value to find Check	.	Temperature
P	Equipment	bar	Pressure
77	Surface for machining Machine finish	>	Oversized Higher than Maximum, peak
\$	Interference Strained assembly	<	Undersized Less than Minimum
	Thickness Clearance		Selection Classes Oversizing
	Lubrication Damp Grease		Temperature < 0 °C Cold Winter
	Sealant Adhesive	ф	Temperature > 0 °C Hot Summer
	Air bleeding		
-			

F2C CURSOR ENGINES INTRODUCTION 5

GENERAL WARNINGS

Warnings shown cannot be representative of all danger situations possibly occurring. Therefore, it is suggested to contact immediate superiors where a danger situation occurs which is not described.

Use both specific and general-purpose toolings according to the prescriptions contained in respective use and maintenance handbooks. Check use state and suitability of tools not subjected to regular check.

The manual handling of loads must be assessed in advance because it also depends, besides weight, on its size and on the path.

Handling by mechanical means must be with hoisters proper as for weight as well as for shape and volume. Hoisters, ropes and hooks used must contain clear indications on maximum carrying capacity acceptable. The use of said means is compulsorily permitted to authorised personnel only. Stay duly clear of the load, and, anyhow, never under it.

In disassembling operations, always observe provided prescriptions; prevent mechanical parts being taken out from accidentally striking workshop personnel.

Workshop jobs performed in pairs must always be performed in maximum safety; avoid operations which could be dangerous for the co-operator because of lack of visibility or of his/her not correct position.

Keep personnel not authorised to operations clear of working area.

You shall get familiar with the operating and safety instructions for the assembly prior to operating on the latter. Strictly follow all the safety indications found on the assembly.

Do not leave the running assembly unattended when making repairs.

When carrying out work on the assembly lifted off the ground, verify that the assembly is firmly placed on its supporting stands, and that the manual/automatic safety devices have been actuated in the event that the assembly is to be lifted by means of a hoist.

When you have to operate on assemblies powered by natural gas, follow the instructions contained in the document, as well as all the specific safety standards provided for.

Only remove radiator cap when the engine is cold by cautiously unscrewing it in order to let system residual pressure out.

Inflammable fuel and all inflammable fluids and liquids must be handled with care, according to what contained on harmful materials 12-point cards. Refuelling must be performed outdoors with the engine off, avoiding lit cigarettes, free flames or sparks in order to prevent sudden fires/bursts. Adequately store inflammable, corrosive and polluting fluids and liquids according to what provided by regulations in force. Compulsorily avoid to use food containers to store harmful liquids. Avoid to drill or bore pressurised containers, and throw cloths impregnated with inflammable substances into suitable containers.

Worn out, damaged or consumable parts must be replaced by original spares.

During workshop activity, always keep the work place clean; timely clear or clean floors from accidental liquid or oil spots. Electric sockets and electric equipment necessary to perform repair interventions must meet safety rules.

INTRODUCTION F2C CURSOR ENGINES

6

Put on, where required by the intervention, garments and protections provided in accident prevention rules; contact with moving parts can cause serious injuries. Use suitable, preferably tight-fitted garments, and avoid to use jewels, scarves, etc.

Do not leave the engine in motion at workshop locations not provided with a pipe to scavenge exhaust gas outside.

Avoid to breathe fumes coming from heating or from paint welding because they can cause damages to health; operate outdoors or in suitably ventilated areas. Put on proper inspirator if paint powder is present.

Avoid contact with hot water or steam coming from the engine, radiator and pipings because they could cause serious burns. Avoid direct contact with liquids and fluids present in vehicle systems; where an accidental contact has occurred, refer to 12-point cards for provisions to make.

Clean the assemblies and carefully verify that they are intact prior to overhauling. Tidy up detached or disassembled parts with their securing elements (screws, nuts, etc.) into special containers.

Check for the integrity of the parts which prevent screws from being unscrewed: broken washers, dowels, clips, etc. Self-locking nuts with an insert made of nylon must always be replaced.

Avoid contact of rubber parts with diesel oil, petrol or other not compatible substances.

Before washing under pressure mechanical parts, protect electric connectors, and central units, if present.

Tightening screws and nuts must always be according to prescriptions; FPT commercial and assistance network is available to give all clarifications necessary to perform repair interventions not provided in this document.

Before welding:

Disconnect all electronic central units, take power cable off battery positive terminal (connect it to chassis bonding) and detach connectors.
Remove paint by using proper solvents or paint removers and clean relevant surfices with soap and water.
Await about 15 minutes before welding.
Equip with suitable fire resistant protections to protect hoses or other components where fluids or other materials flow which may catch fire easily on welding.

Should the vehicle be subjected to temperatures exceeding 80°C (dryer ovens), disassemble drive electronic central units.

The disposal of all liquids and fluids must be performed with full observance of specific rules in force.

F2C CURSOR ENGINES INTRODUCTION $oldsymbol{7}$

GENERAL WARNINGS ON THE ELECTRIC SYSTEM

If an intervention has to be made on the electric/electronic system, disconnect batteries from the system; in this case, always disconnect, as a first one, the chassis bonding cable from batteries negative terminal.

Before connecting the batteries to the system, make sure that the system is well isolated.

Disconnect the external recharging apparatus from the public utility network before taking apparatus pins off battery terminals.

Do not cause sparks to be generated in checking if the circuit is energised.

Do not use a test lamp in checking circuit continuity, but only use proper control apparatuses.

Make sure that the electronic devices wiring harnesses (length, lead type, location, strapping, connection to screening braiding, bonding, etc.) comply with FPT system and are carefully recovered after repair or maintenance interventions.

Measurements in drive electronic central units, plugged connections and electric connections to components can only be made on proper testing lines with special plugs and plug bushes. Never use improper means like wires, screwdrivers, clips and the like in order to avoid the danger of causing a short circuit, as well as of damaging plugged connections, which would later cause contact problems.

To start up the engine, do not use fast chargers. Start up must only be performed with either separate batteries or special truck.

A wrong polarisation of supply voltage in drive electronic central units (for instance, a wrong polarisation of batteries) can cause them to be destroyed.

Disconnect the batteries from the system during their recharging with an external apparatus.

On connecting, only screw up connector (temperature sensors, pressure sensors etc.) nuts at prescribed tightening torque.

Before disconnecting the junction connector from an electronic central unit, isolate the system.

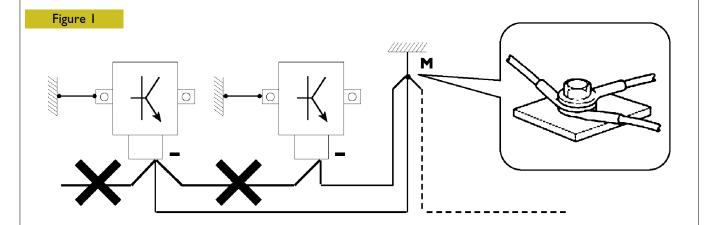
Do not directly supply electronic central units servo components at nominal vehicle voltage.

Cables must be arranged such as to result to be parallel to reference plane, i.e. as close as possible to chassis/body structure.

Once the intervention on the electric system has been completed, recover connectors and wiring harnesses according to original arrangement.

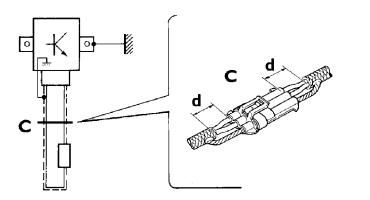
NOTE

Connectors present must be seen from cable side. Connectors views contained in the manual are representative of cable side.


8 INTRODUCTION F2C CURSOR ENGINES

Bonding and screening

Negative leads connected to a system bonded point must be both as short and possible and "star"-connected to each other, trying then to have their centering tidily and properly made (Figure 1, re. M).


Further, following warnings are to be compulsorily observed for electronic components:

- Electronic central units must be connected to system bonding when they are provided with a metallic shell.
- Electronic central units negative cables must be connected both to a system bonding point such as the dashboard opening bonding (avoiding 'serial' or 'chain' connections), and to battery negative terminal.
- Analog bonding (sensors), although not connected to battery negative system/terminal bonding, must have optimal isolation. Consequently, particularly considered must be parasitic resistances in lugs: oxidising, clinching defects, etc.
- Screened circuits braiding must only electrically contact the end towards the central unit entered by the signal (Figure 2).
- If junction connectors are present, unscreened section d, near them, must be as short as possible (Figure 2).
- Cables must be arranged such as to result to be parallel to reference plane, i.e. as close as possible to chassis/body structure.

I. NEGATIVE CABLES "STAR" CONNECTION TO SYSTEM BONDING $\,\mathbf{M}\,$

88039

2. SCREENING THROUGH METALLIC BRAIDING OF A CABLE TO AN ELECTRONIC COMPONENT – C. CONNECTOR d. DISTANCE ightarrow 0

CONVERSIONS BETWEEN THE MAIN UNITS OF MEASUREMENT OF THE INTERNATIONAL SYSTEM AND MOST USED DERIVED QUANTITIES

Power

Torque

I Nm = 0.1019 kgmI kgm = 9.81 Nm

Revolutions per time unit

l rad/s = $l rpm \times 0.1046$ l rpm = $l rad/s \times 9.5602$

Pressure

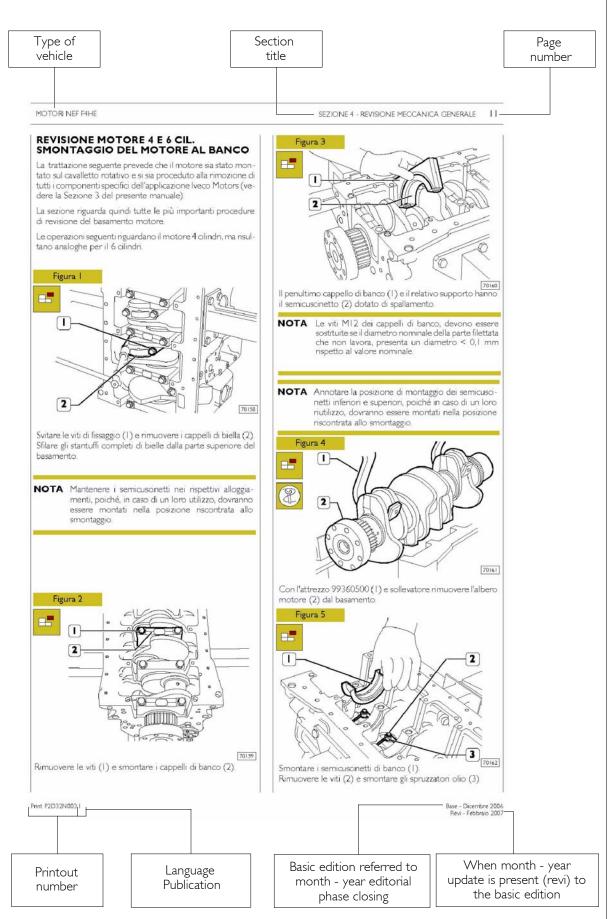
 $| bar = 1.02 \text{ kg/cm}^2$ $| kg/cm^2 = 0.98 | bar$ $| bar = 10^5 \text{ Pa}$

Where accuracy is not particularly needed:

Nm unit is for the sake of simplicity converted into kgm according to ratio 10:1

l kgm = 10 Nm;

 \Box bar unit is for the sake of simplicity converted into kg/cm² according to ratio 1:1


 $l kg/cm^2 = l bar.$

Temperature

 $0^{\circ} C = 32^{\circ} F$ $1^{\circ} C = (1 \times 1.8 + 32)^{\circ} F$

10 INTRODUCTION F2C CURSOR ENGINES

KEY OF LECTURE OF THE HEADINGS AND FOOTNOTES

Part I F2C CURSOR ENGINES	Section
General specifications	1
Fuel	2
Industrial application	3
Overhaul and technical specifications	4
Tools	5
Safety prescriptions	Appendix

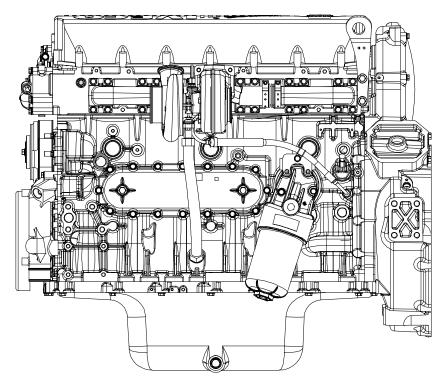
UPDATING

Section	Description	Page	Date of revision

Τ

SECTION I

			4 •
General	SDE	CITIC	ลบเดทร
-	_P\		ac. 0


	Page
MAPPING BETWEEN TECHNICAL	
AND COMMERCIAL CODING	3
VIEWS OF THE ENGINE	5
LUBRICATION DIAGRAM	8
Oil pump	9
Overpressure valve	9
Oil pressure control valve	10
Heat exchanger	10
ENGINE OIL FILTER	11
☐ Characteristics	11
Lock torques	11
☐ Installation rule	11
Filter by-pass valve	11
Replacing oil filter cartridge	12
Oil fume recycle (Blow-by)	13
COOLING	14
☐ Description	14
Operation	14
☐ Water pump	16
Thermostat	16
TURBOCHARGING	
EGR EXHAUST GAS RECYCLE SYSTEM	18
INTERNAL EGR OPERATING ON SUCTION VALVES	18

MAPPING BETWEEN TECHNICAL AND COMMERCIAL CODING

Technical Code	Commercial Code
F2CE9687A*E001	
F2CE9687B*E001	C87 ENT X
F2CE9687C*E001	

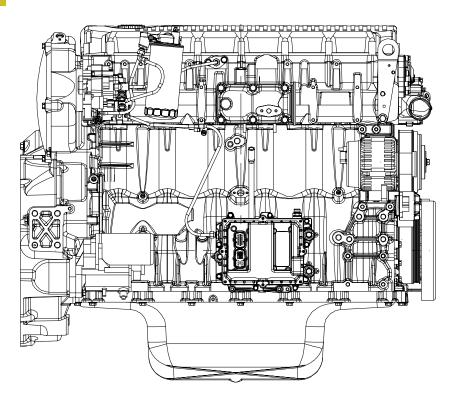
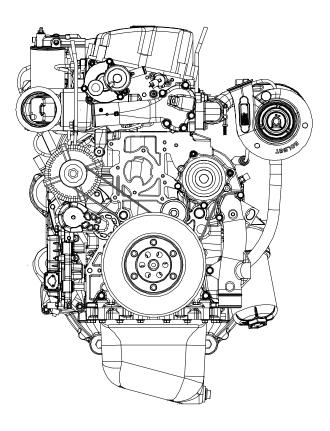

VIEWS OF THE ENGINE

Figure I

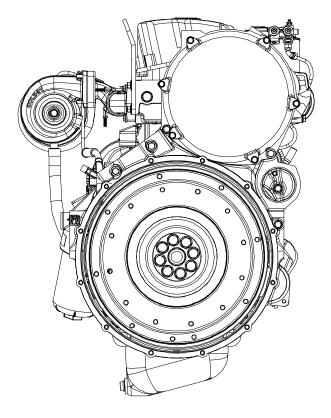
LEFT-HAND SIDE VIEW

Figure 2



RIGHT-HAND SIDE VIEW

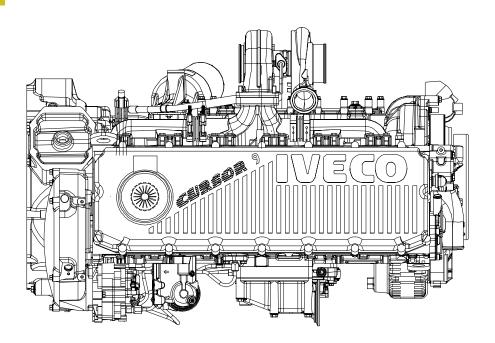
144839


144838

Print P2D32C006 E

FRONT HAND SIDE VIEW

Figure 4



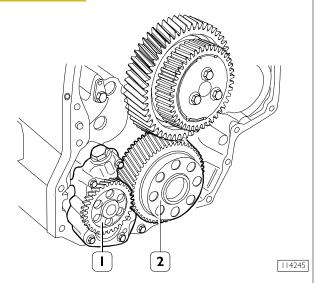
REAR HAND SIDE VIEW

144841

144840

Figure 5

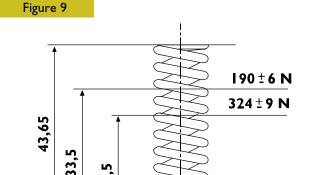
144842


TOP VIEW

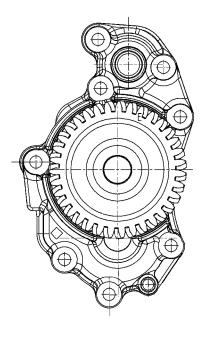
LUBRICATION DIAGRAM Figure 6 Dropping oil Pressure oil

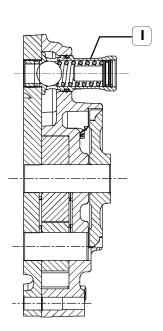
114244

Oil pump


Figure 7

The oil pump (I) cannot be overhauled. On finding any damage, replace the oil pump assembly.

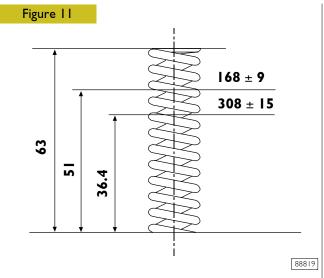

See under the relevant heading for replacing the gear (2) of the crankshaft.


Overpressure valve

MAIN DATA TO CHECK THE OVERPRESSURE VALVE SPRING

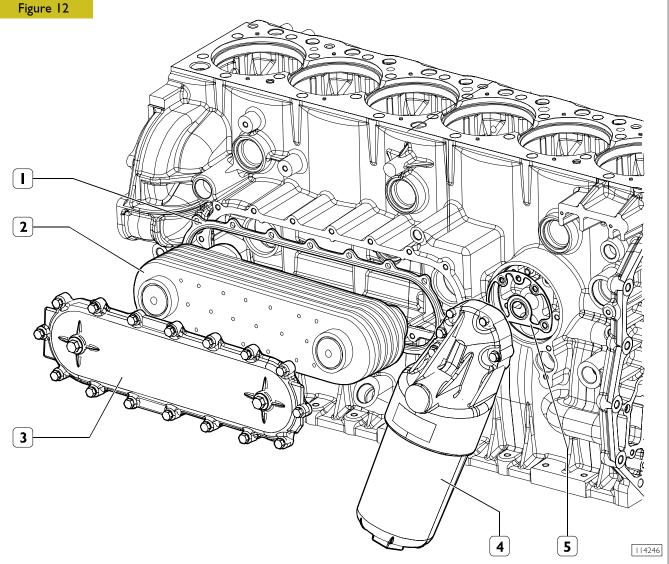
Figure 8

112327


OIL PUMP CROSS-SECTION

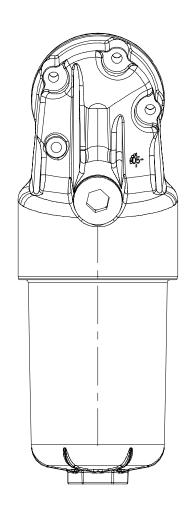
1. Overpressure valve – Start of opening pressure 10.1 \pm 0.7 bars.

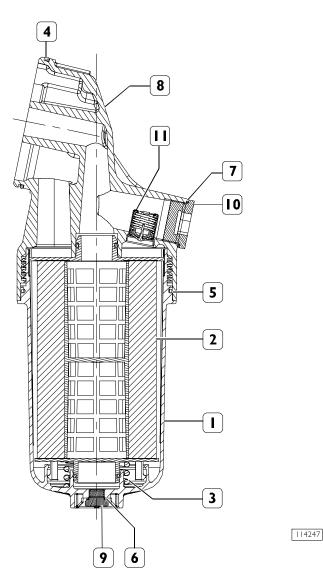
Oil pressure control valve Figure 10


The oil pressure control valve is located on the left-hand side of the crankcase.

Start of opening pressure 5 bars.

MAIN DATA TO CHECK THE OIL PRESSURE CONTROL VALVE SPRING


Heat exchanger



1. Exchanger seal - 2. Internal heat exchanger element - 3. Cover - 4. Oil filter - 5. Oil filter seal

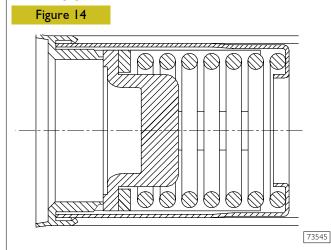
ENGINE OIL FILTER

Figure 13

1. Closure cap - 2. Cartridge - 3. Spring - 4. Support O-ring - 5. Tank O-ring - 6. Washer - 7. Washer - 8. Support - 9. Plug M14x1.5 - 10. Plug M38x1.5 - 11. By-pass valve 3.4 bars.

Characteristics

- 1. Max working pressure: 13 bars
- 2. Working temperature: 30° C ÷ + 120° C
- 3. By-pass valve opening value: 3.4 ± 0.3 bar

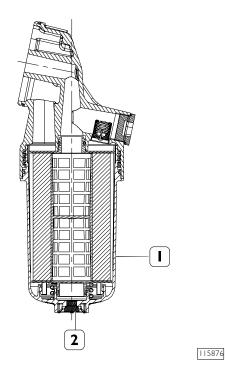

Lock torques

Cap (part 1): 60 ± 5 Nm Plug (part 9): 30 ± 5 Nm Plug (part 10): 90 ± 5 Nm

Installation rule

Use threadlock for plug (part 10).

Filter by-pass valve

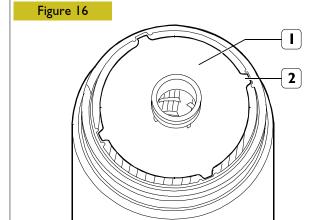


Valve opens quickly at 3.4 ± 0.3 bar pressure.

115879

Replacing oil filter cartridge Dismantling

Figure 15

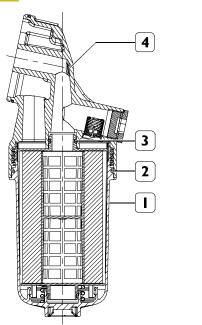

Remove the plug (2).

Undo the filter casing (I) by a couple of turns and wait for a few minutes.

In this way the remaining oil in the casing starts firstly to drip and then to flow smoothly out.

Completely undo the casing and then replace the cartridge.

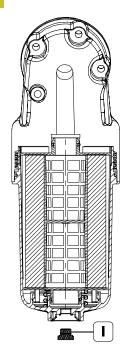
Refitting



Insert the cartridge in the casing aligning the centering tabs (2) on the upper plate (1) with the seats.

The cartridge should be pushed into the container until the action of the attachment system at the bottom of the casing is overcome.

At the same time, the tabs on the upper plate should slide into the housings.


Move the upper part of the casing thread close to the first lower thread of the support (the cartridge cover element should be in contact with the oil outlet duct on the support).

Proceed with tightening the cartridge-casing assembly (1) on the support (4).

During this stage both the seal (3) for the oil outlet duct-cartridge element and the casing-support seal (2) will gradually be involved.

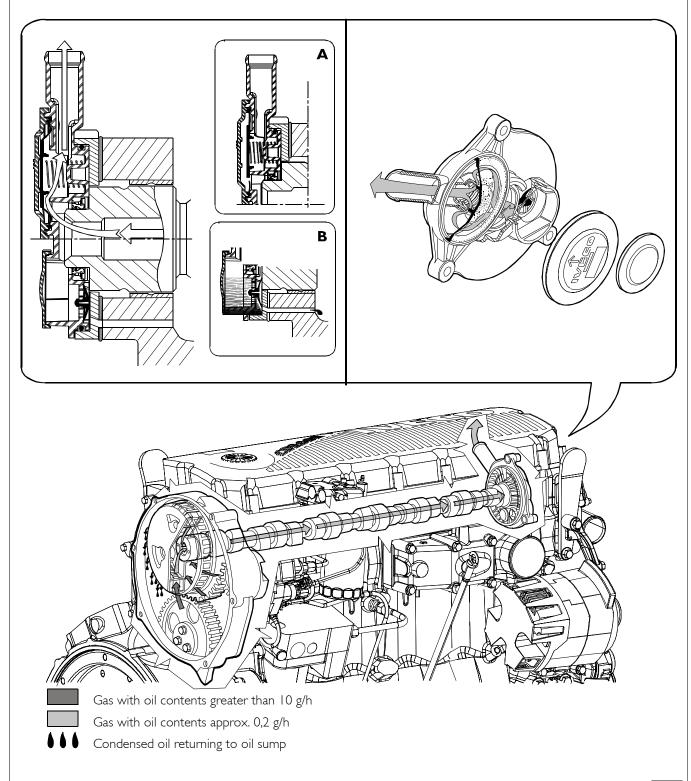
Tighten the filter casing to a torque of 65 Nm.

Figure 18

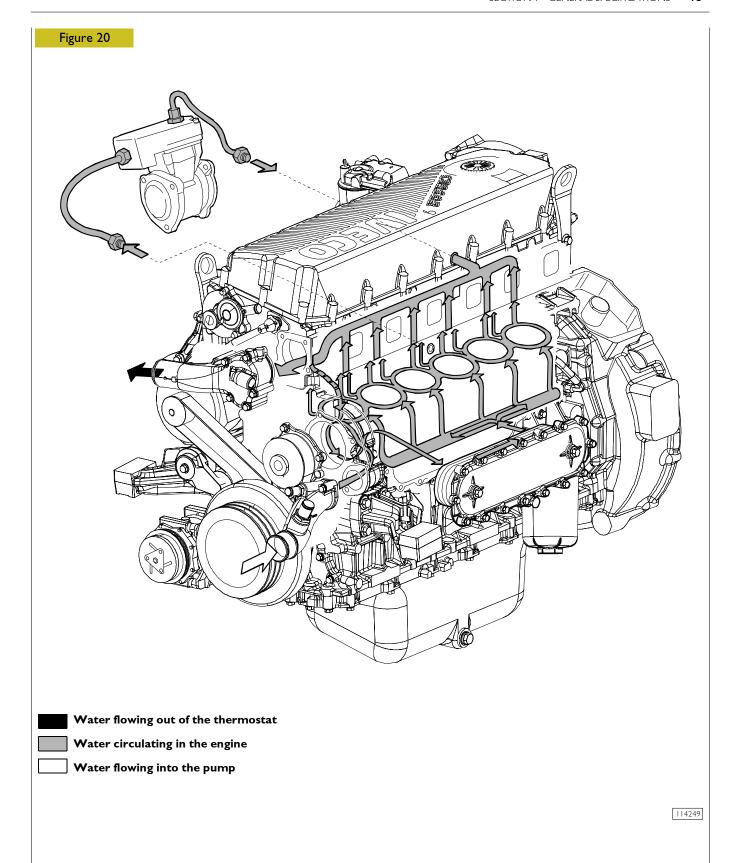
Tighten the protective cap (1) on the filter casing.

Base - May 2010 Print P2D32C006 E

115877

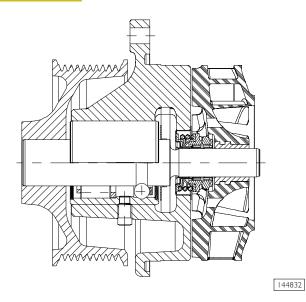

Oil fume recycle (Blow-by)

Part of gas produced by combustion during engine operation leaks through piston elastic ring openings into sump, mixing with oil fumes in sump.


This mixture, conveyed upward, is partially separated from oil by a device located in timing cover upper part and introduced in air intake circuit.

The device mainly consists of a rotary filter secured on propeller shaft and by a front cover housing normally closed valves controlling mixture flow.

Figure 19

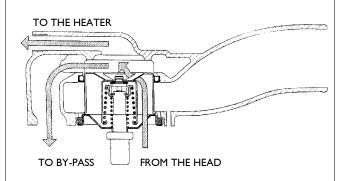


COOLING
Description
The engine cooling system is of the closed-circuit, forced circulation type. It consists mainly of the following components:
expansion tank, not supplied (by IVECO);
a heat exchanger to cool down lubrication oil;
a water pump with centrifugal system incorporated in the cylinder block;
fan, not supplied;
a 2-way thermostat controlling the coolant circulation.
Operation
The water pump is actuated by the crankshaft through a poli-V belt and sends coolant to the cylinder block, especially to the cylinder head (bigger quantity). When the coolant temperature reaches and overcomes the operating temperature, the thermostat is opened and from here the coolant flows into the radiator and is cooled down by the fan. The pressure inside the system, due to temperature change, is adequately controlled through the expansion vessel.

Water pump

Figure 21

CROSS-SECTION OF THE WATER PUMP


The water pump comprises: impeller, shaft with bearing, front seal, drive pulley.

NOTE Check that the pump body has no cracks or water leakage; if it does, replace the entire water pump.

Thermostat

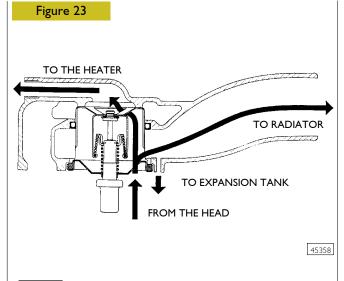
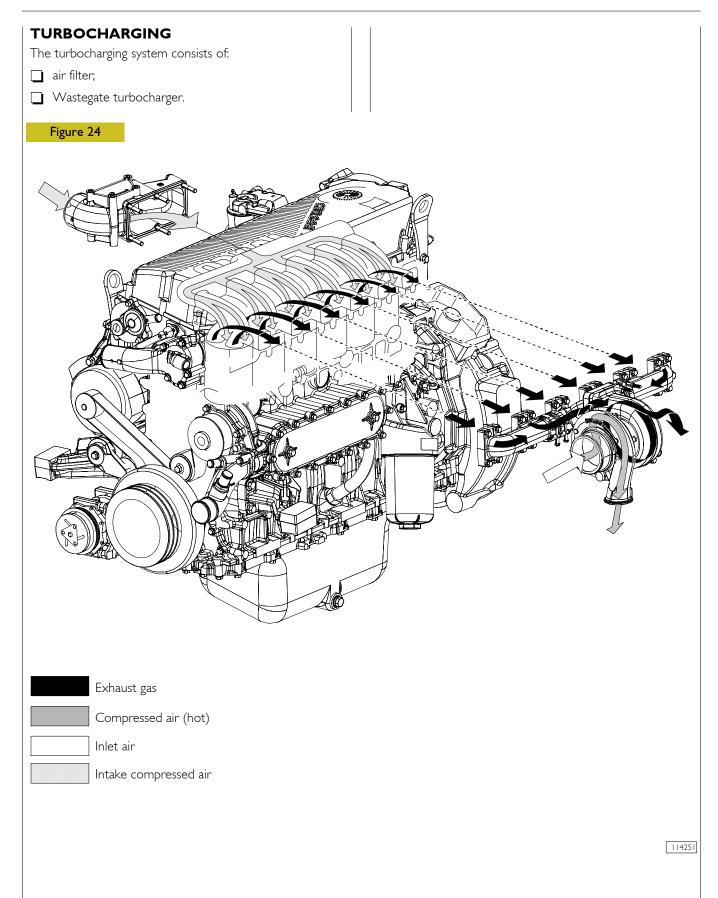

View of thermostat operation

Figure 22

Water circulating in the engine


45357

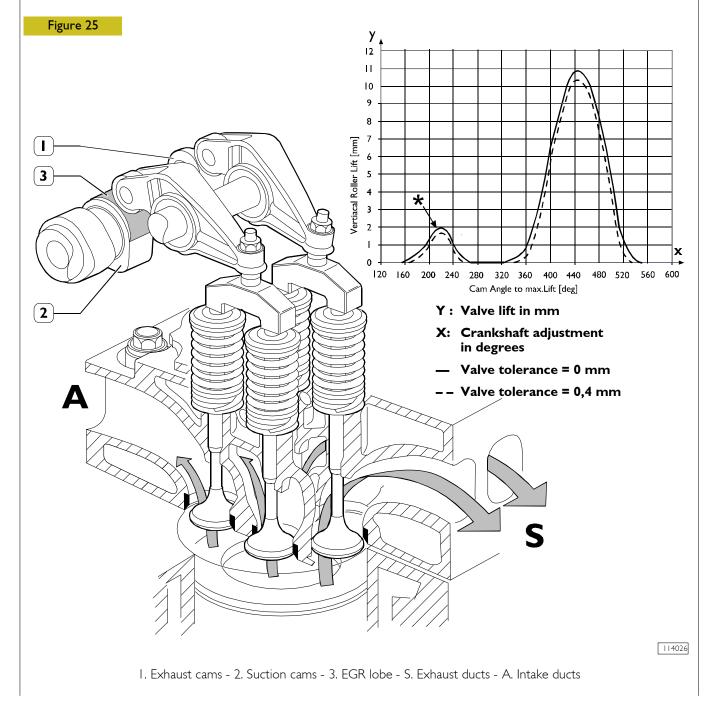
Water leaving the thermostat

Check the thermostat works properly; replace it if in doubt.

Temperature of start of travel 85 °C \pm 1.5 °C. Minimum travel 9.5 mm at 95 °C.

EGR EXHAUST GAS RECYCLE SYSTEM

The exhaust gas can be partially recycled to cylinders to reduce maximum temperature values of combustion that produce nitrogen oxides (NOx).


The exhaust gas recycle system (EGR) reduces combustion temperature and therefore is an efficient NOx emission control system.

INTERNAL EGR OPERATING ON SUCTION VALVES

The specific design of suction cams of the internal EGR system allows part of exhaust gas to be recycled to engine cylinders.

This type of EGR, called internal EGR, is not equipped with any electronic control, the system is always active. Its configuration requires no additional parts such as control valves, pipelines or heat exchangers therefore engine profile remains unchanged.

Besides main lobe, suction cam has an additional lobe (3) as to configuration without EGR. During concerned cylinder exhaust phase, this lobe allows a shaft advanced opening of intake valve (*). In this way, part of the exhaust gas is trapped in the suction duct and later, during cylinder suction phase, this gas is recycled to cylinder inlet for combustion phase.

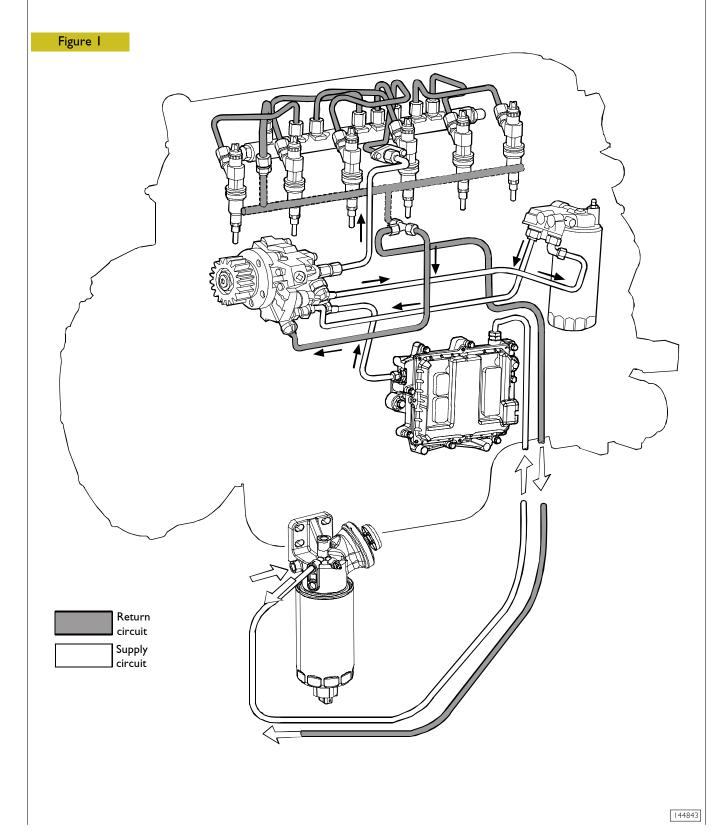
F2C CURSOR ENGINES SECTION 2 - FUEL

SECTION 2

Fuel

	Page
SUPPLY	. 3
FUEL SUPPLY DIAGRAM	. 4
MECHANICAL SUPPLY PUMP	. 5
Normal operating conditions	. 5
Overpressure condition at outlet	. 5
Drain conditions	. 5
CP3 HIGH-PRESSURE PUMP	. 6
HIGH-PRESSURE PUMP - INSIDE STRUCTURE .	. 7
Operating principle	. 8
Operation	. 10
RAIL (PRESSURE ACCUMULATOR)	. 10
Electroinjector	. 10

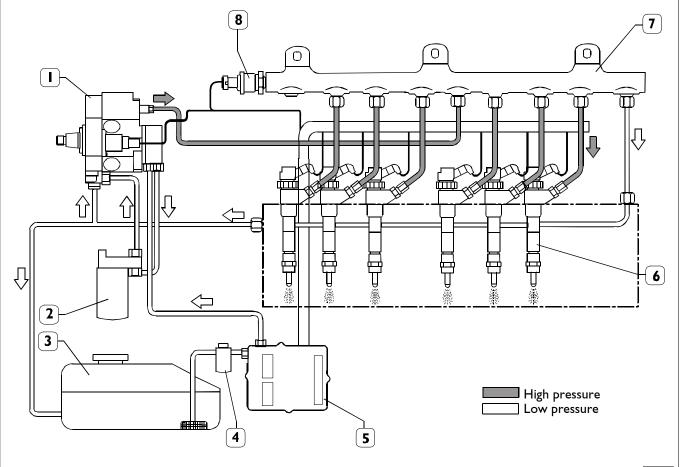
2 SECTION 2 - FUEL F2C CURSOR ENGINES


F2C CURSOR ENGINES SECTION 2 - FUEL **3**

SUPPLY

The Common Rail supply system is equipped with a special pump that maintains fuel at constant high pressure regardless from phase and cylinder under injection and accumulated in an common duct shared by all electric injectors.

Therefore, fuel at injection pressure, calculated by ECU, is always available at electric injection inlet.


When the solenoid valve of an injector is energized by ECU, in related cylinder the injection of fuel taken directly from the rail takes place.

SECTION 2 - FUEL F2C CURSOR ENGINES

FUEL SUPPLY DIAGRAM

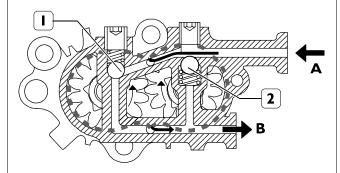
Figure 2

144820

1. High-pressure pump - 2. Fuel filter - 3.Tank - 4. Fuel pre-filter - 5.ECU - 6. Electric injectors - 7.Common Rail - 8. Pressure sensor

After high-pressure pipeline installation, during the following 20 hours of work, frequently check engine oil level. (IT MUST NOT INCREASE).

F2C CURSOR ENGINES SECTION 2 - FUEL 5

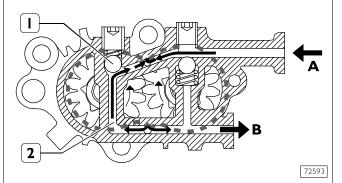

MECHANICAL SUPPLY PUMP

Gear pump, fitted on the rear side of the high pressure pump and used to supply it.

It is controlled by high pressure pump shaft.

Normal operating conditions

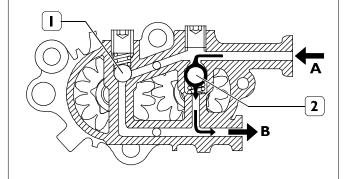
Figure 3



72592

A Fuel inlet from tank, B fuel outlet to filter, 1-2 by-pass valves in close position

Overpressure condition at outlet


Figure 4

The by-pass valve (I) cuts in when overpressure is generated at outlet B. The existing pressure, overcoming valve spring (I) elastic strength, makes inlet and outlet communicating through duct (2).

Drain conditions

Figure 5

72594

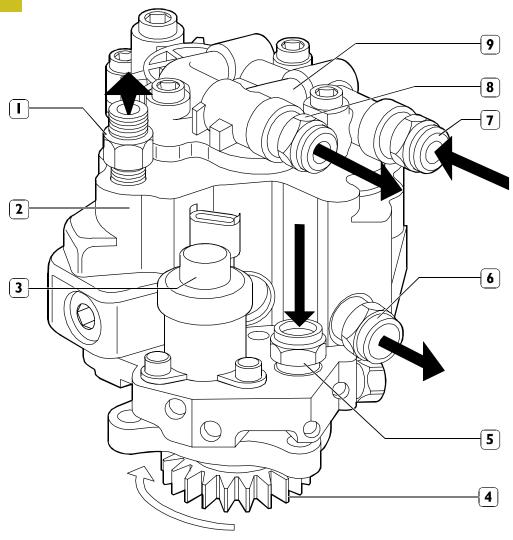
The by-pass valve (2) cuts in when, with engine off, the fuel system shall be filled through the priming pump. In this situation the by-pass valve (1) stays closed whereas by-pass valve (2) opens due to inlet pressure, and fuel is drained out through ${\bf B}$.

NOTE The mechanical supply pump cannot be replaced individually, therefore it cannot be removed from the high pressure pump.

6 SECTION 2 - FUEL F2C CURSOR ENGINES

CP3 HIGH-PRESSURE PUMP

Pump with 3 radial pistons controlled by the timing gear, without needing any setting. On the rear side of the high pressure pump is fitted the mechanical supply pump controlled by the high pressure pump shaft.

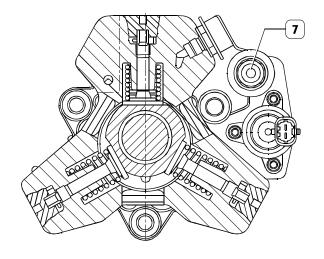


The following work must be carried out on the feed pump / high-pressure pump assembly:

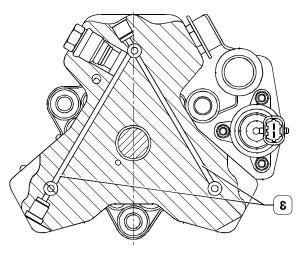
replacing the drive gear;

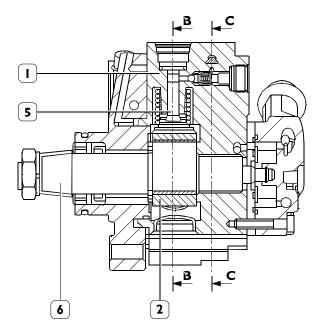
replacing the pressure regulator.

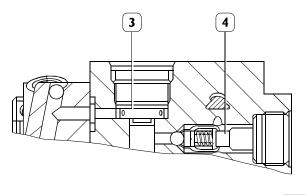
72595


I. Fuel outlet fitting to rail - 2. High-pressure pump - 3. Pressure regulator - 4. Control gear - 5. Fuel inlet fitting from filter 6. Fuel outlet fitting to filter support - 7. Fuel inlet fitting from control unit heat exchanger - 8. Fuel outlet fitting from supply pump to filter - 9. Mechanical supply pump

F2C CURSOR ENGINES SECTION 2 - FUEL **7**


HIGH-PRESSURE PUMP - INSIDE STRUCTURE


Figure 7


sec. B-B

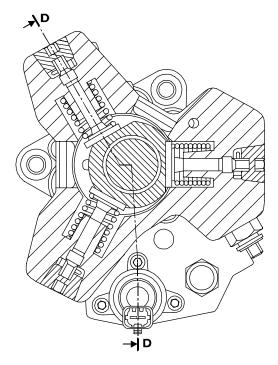
sec. C-C

70498

 $\begin{array}{l} \hbox{I. Cylinder}-2. \ \hbox{Three-lobe element}-3. \ \hbox{Cap intake valve}-4. \ \hbox{Ball delivery valve}-5. \ \hbox{Piston}-6. \ \hbox{Pump shaft}-5. \ \hbox{Low-pressure fuel inlet}-8. \ \hbox{Pumping elements supplying fuel ducts} \end{array}$

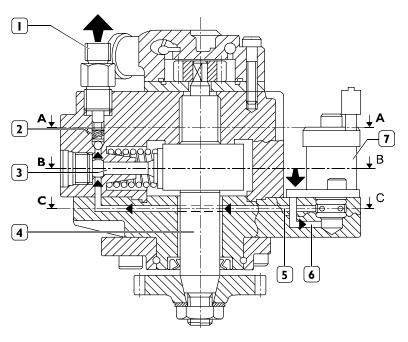
Every pumping unit is composed of:

a piston (5) actuated by a three-lobe element (2) floating on the pump shaft (6). The element (2), being **floating** on a misaligned part of the shaft (6), when the shaft rotates, does not rotate therewith but is only


translated in a circular movement along a wider radius, with the resulting alternate actuation of the three pumping elements;

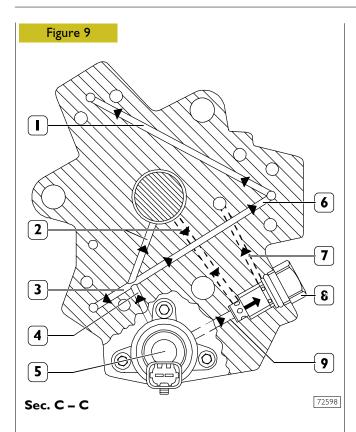
- cap intake valve (3);
- **a** ball delivery valve (4).

8 SECTION 2 - FUEL F2C CURSOR ENGINES


Operating principle

Sec. B - B

Sec. D - D


72597

I. Fuel outlet fitting to rail - 2. Delivery valve to rail - 3. Pumping element - 4. Pump shaft - 5. Pumping element supply duct - 6. Pressure regulator supply duct - 7. Pressure regulator

Pumping element (3) is oriented to pump shaft (4) cam. During intake, the pumping element is supplied through supply duct (5). The fuel amount to be sent to the pumping element is set by the pressure regulator (7). The pressure regulator meters fuel flow to pumping element according to

the PWM signal received from ECU. During pumping element compression stage, fuel reaches the pressure required to open the delivery valve to common rail (2) and to feed it through outlet (1).

F2C CURSOR ENGINES SECTION 2 - FUEL 9

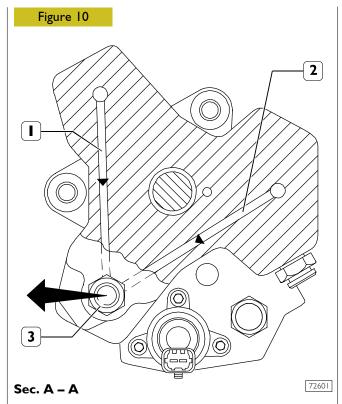

Pumping element inlet - 2. Pump lubrication ducts - 3. Pumping element inlet - 4. Main pumping element supply duct - 5. Pressure regulator - 6. Pumping element inlet - 7. Regulator exhaust duct - 8. 5 bar pressure relief valve - 9. Fuel drain from regulator inlet

Figure 9 shows low pressure fuel paths inside the path and highlights: main pumping element supply duct (4), pumping element supply ducts (1-3-6), pump lubrication ducts (2), pressure regulator (5), 5 bar pressure relief valve (8) and fuel drain duct (7).

Pump shaft is lubricated by fuel through delivery and return ducts (2).

Pressure regulator (5) establishes the fuel amount to send to pumping elements; excess fuel is drained out through duct (9).

5 bar pressure relief valve acts as fuel exhaust manifold and keeps 5 bar constant pressure at regulator inlet.

1. Fuel outlet duct - 2. Fuel outlet duct - 3. Fuel outlet from pump with high pressure pipe fitting for common rail

Figure 10 shows high pressure fuel flow through pumping element outlet ducts.

10 SECTION 2 - FUEL F2C CURSOR ENGINES

Operation

The cylinder is filled through the cap intake valve only if the supply pressure is suitable to open the delivery valves set on the pumping elements (about 2 bars).

The amount of fuel supplying the high-pressure pump is metered by the pressure regulator, placed on the low-pressure system; the pressure regulator is controlled by the EDC7 control unit through a PWM signal.

When fuel is sent to a pumping element, the related piston is moving downwards (suction stroke). When the piston stroke is reversed, the intake valve closes and the remaining fuel in the pumping element chamber, not being able to come out, is compressed above the supply pressure value existing in the rail.

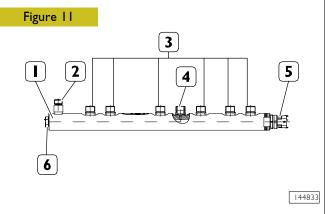
The thereby-generated pressure makes the exhaust valve open and the compressed fuel reaches the high-pressure circuit.

The pumping element compresses the fuel till the top dead center (delivery stroke) is reached. Afterwards, the pressure decreases till the exhaust valve is closed.

The pumping element piston goes back towards the bottom dead center and the remaining fuel is decompressed.

When the pumping element chamber pressure becomes less than the supply pressure, the intake valve is again opened and the cycle is repeated.

The delivery valves must always be free in their movements, free from impurities and oxidation.


The rail delivery pressure is modulated by the electronic control unit, through the pressure regulator solenoid valve.

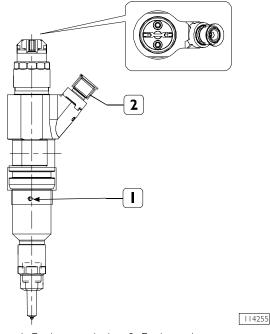
The pump is lubricated and cooled by the fuel.

The radialjet pump disconnection – reconnection time on the engine is highly reduced in comparison with traditional injection pumps, because it does not require setting.

If the pipe between fuel filter and high-pressure pump is to be removed-refitted, be sure that hands and components are absolutely clean.

RAIL (PRESSURE ACCUMULATOR)

I. Rail - 2. Fuel return - 3.Pipelines to injectors - 4. Fuel supply to high pressure pump - 5. Pressure sensor - 6. Overpressure valve


The rail volume is of reduced sizes to allow a quick pressurisation at startup, at idle and in case of high flow-rates.

It anyway has enough volume as to minimise use of plenum chambers caused by injectors openings and closings and by the high-pressure pump operation. This function is further enabled by a calibrated hole being set downstream of the high-pressure pump.

A fuel pressure sensor (5) is screwed to the rail. The signal sent by this sensor to the electronic control unit is a feed-back information, depending on which the rail pressure value is checked and, if necessary, corrected.

Electroinjector

Figure 12

1. Fuel return hole - 2. Fuel supply

SECTION 3

Industrial application				
	Page			
CLEARANCE DATA	3			
PART ONE - MECHANICAL COMPONENTS	5			
ENGINE DISASSEMBLY ON BENCH	7			
ASSEMBLY	11			
High pressure pump installation	15			
ENGINE FLYWHEEL	15			
Engine flywheel installation	15			
Camshaft installation	16			
TIMING CAMSHAFT AND FLYWHEEL USING TOOL 99395223	17			
☐ Timing camshaft	17			
Timing flywheel	19			
TIMING CAMSHAFT AND FLYWHEEL WITHOUT TOOL 99395223	19			
Timing camshaft	19			
Timing flywheel	22			
Intake and exhaust rocker arm clearance adjustment	23			
ENGINE ASSEMBLY COMPLETION	25			
PART TWO - ELECTRICAL EQUIPMENT	27			
COMPONENTS ON THE ENGINE F2C	29			
ENGINE CABLE	30			
EDC 7 UC3 I CONTROL UNIT PIN-OUT	31			
EDC 7 UC31 ELECTRONIC CONTROL UNIT	32			
EDC CONTROL UNIT PIN-OUT	33			
☐ Electric injector connector "A"	33			
Sensor connector "C"	34			
☐ Electroinjectors	35			
Engine coolant temperature sensor	36			
☐ Fuel temperature sensor	37			

Print P2D32C006 E

Base - May 2010

		Page		
	High pressure pump (pressure regulator)	38		
	Flywheel pulse transmitter	39		
	Distribution pulse transmitter	40		
	Oil temperature/pressure sensor (42030 /47032)	41		
	Air pressure/temperature sensor (85156)	42		
	Fuel pressure sensor on rail	43		
	Alternator	44		
	Starting motor	45		
EDO	SYSTEM FUNCTIONS	46		
PART THREE - TROUBLESHOOTING				
PREFACE				
DIAGNOSTIC EQUIPMENT				
	PT-01	52		
	PT - BOX	53		
FAL	JLT CODES	54		
	RT FOUR - MAINTENANCE PLANNING	57		
MA	INTENANCE PLANNING	59		
	Recovery	59		
	Planning of controls and periodical intervention	59		
OFF	F-PLANE OPERATIONS	61		
MA	INTENANCE PROCEDURES	62		
	Checks and controls	62		

CLEARANCE	DATA				
Type				F2CE9687	
]		A*E	B*E	C*E
Î	Cycle		4-stroke Diesel engine		
	Fuel feed		Turbocharged		
	Injection		Direct		
	No. of cylinders		6 in line		
	Bore	mm	117		
	Stroke	mm	135		
+ + + +	Total displacement	cm ³	8710		
${\it Q}$	Compression ratio		I: I5.9 ± 0.8		
1	Maximum	kW	260	230	200
	power	(CV) rpm	354 2100	313 2100	272 2100
<u> </u>	N4	Nm	1500	1400	1300
	Max. torque	(kgm) rpm	1400	1400	1400
(ATP)	Loadless				
	engine idling	rpm	_		
	Loadless engine peak	rpm	_		
	SUPERCHARGING	'	Intercooler Direct injection		
UN	Turbocharger type		HX40		
	LUBRICATION				
bar	Oil pressure (warm engine) - idling - peak rpm	bar bar	Forced by gear pump, relief valve single action oil filter -		
	COOLING			Liquid	
	Water pump control		Through belt		
	Thermostat - start of opening	°C		85	

NOTE Data, features and performances are valid only if the setter fully complies with all the installation prescriptions provided by FPT.

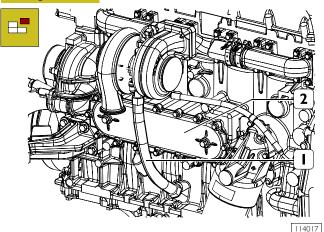
Furthermore, the users assembled by the setter shall always be in conformance to couple, power and number of turns based on which the engine has been designed.

PART ONE -
TANT VILE-
MECHANICAL COMPONENTS

5

SECTION 3 - INDUSTRIAL APPLICATION

F2C CURSOR ENGINES

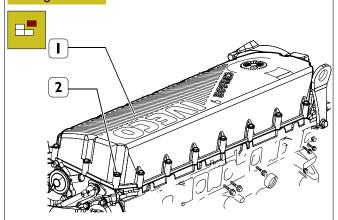

6

ENGINE DISASSEMBLY ON BENCH

NOTE Before installing engine on rotary stand 99322230, remove parts that might interfere with the installation of brackets 99361042.

Therefore, remove heat exchanger and oil line as shown below.

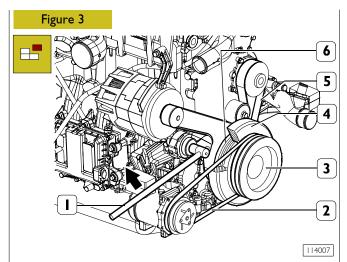
Under heat exchanger (2) place a container for engine coolant drain.


Unlock retaining screws and remove heat exchanger assembly (2).

Remove oil outlet line (1).

Install engine on rotary stand 99322230.

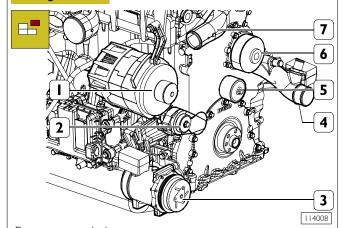
Drain sump oil in specific container.


Figure 2

114016

Unlock retaining screws (2) and remove head cover (1) to reach injector and rail wiring.

Remove wiring from all components shown in "Electric equipment" section.



If air conditioner compressor is installed, cut belt (2) as it must not be reused.

Use specific tool (I) and operate in the arrow direction to remove water pump and alternator control belt (5).

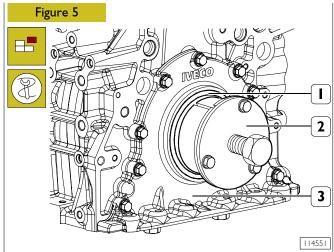
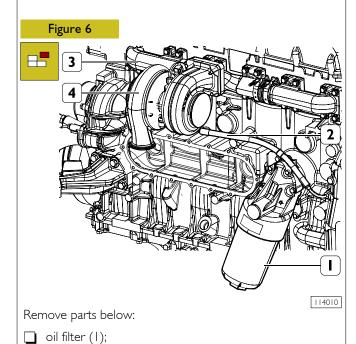
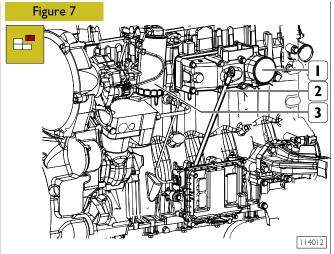

Remove screws and separate pulleys (3) and (6) with damping flywheel (4).

Figure 4

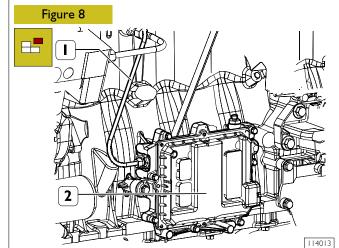


Remove parts below:

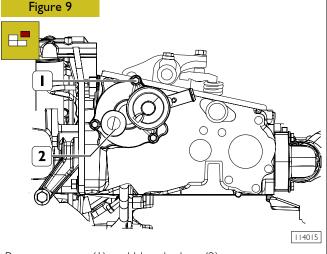
- alternator (1);
- belt tensioner (2);
- if present, air conditioner compressor (3);
- water pump (6);
- flanged pipe (4);
- fixed belt tensioner (5);
- thermostat assembly (7).



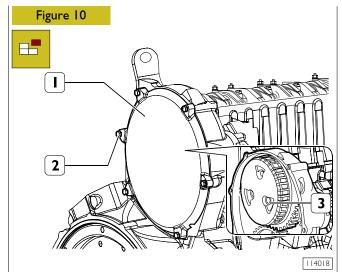
Apply extractor 99340051 (2) and remove seal (1). Unlock screws and remove front cover (3).


urbocompressor (4) and exhaust manifold (3). On opposite engine side, remove start-up motor.

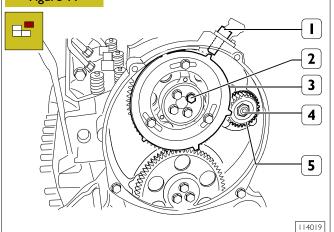
oil inlet line (2);



Remove parts below:


- ul>
 fuel filter (3);
- oil level rod (2);
- intake manifold (1).

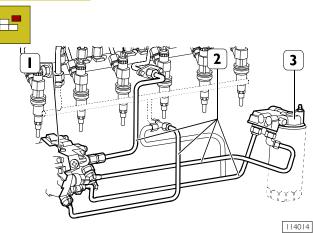
Disconnect line (I) from high pressure pump support and remove ECU (2) with support below.



Remove screws (I) and blow-by box (2).

Unlock screws (2) and remove cover (1). Remove centrifugal filter (3) below.

Figure 11


Use specific spanner to unlock screws (2) and remove gear (3) complete with tune wheel.

Unlock nut (4) and remove control gear (5) of high pressure pump.

Remove rpm sensor (1).

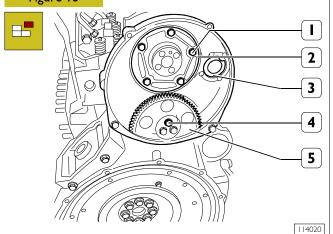
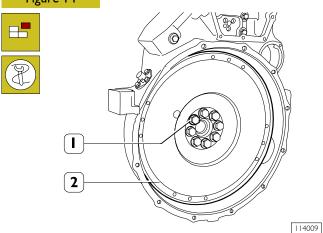

NOTE In case removal of gear (5) is difficult, release high pressure pump screws with light beater strokes on control shaft and remove gear (5).

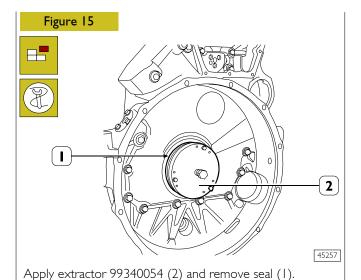
Figure 12

Disconnect fuel lines (2), unlock retaining screws and remove high pressure pump (1). Remove fuel filter support (3) complete with pipeline.

Figure 13



Unlock screws (1) and remove thrust plate (2).


Use specific spanner to unlock screws (4) and remove relay gear (5).

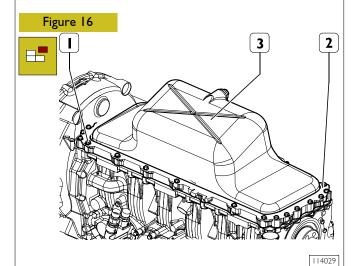
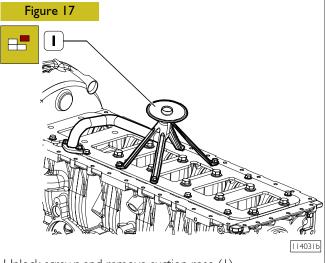
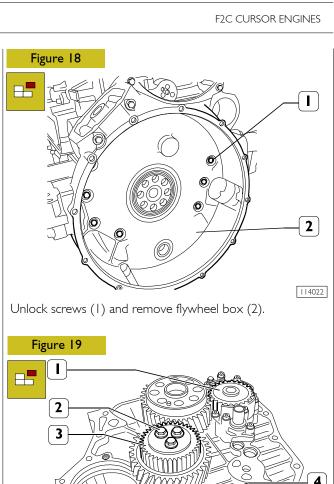

Remove high pressure pump mount flange (3).

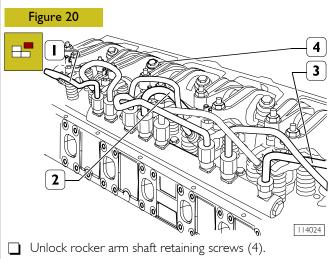
Figure 14



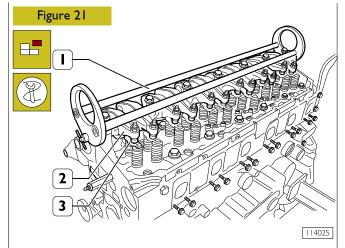
Use specific tool lock engine flywheel (2) rotation, unlock retaining screws (1) and remove engine flywheel.



Unlock screws (1) and remove engine oil sump (3) complete with spacer (2) and seal.

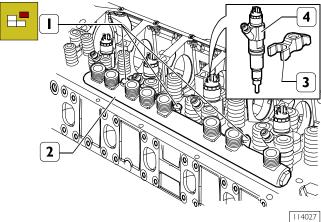


Unlock screws and remove suction rose (1).



Remove screws (2) and double gear (3).
Remove retaining screw (5) and connecting rod (4).
Remove oil pump (1).

114023



Disconnect fuel pipelines (1) from injector rail, fuel supply line (2) of high pressure pump to rail and return line (3).

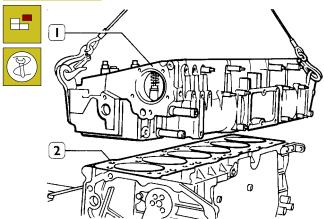
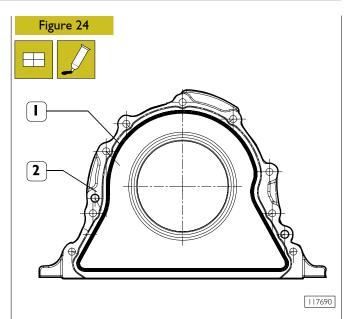

Apply tool 99360558 (1) to rocker arm shaft (2) and remove shaft, remove crosspieces (3) from cylinder head.

Figure 22

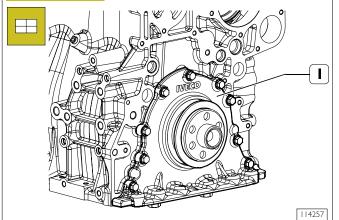


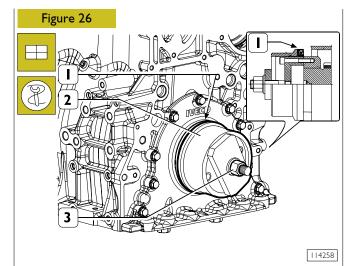
Remove retaining brackets (3) and remove injectors (4). Remove retaining screws (1) and remove rail (2).

Figure 23

Remove camshaft and remove cylinder head retaining screws.
Use metallic ropes to lift cylinder head (1) and remove seal (2).

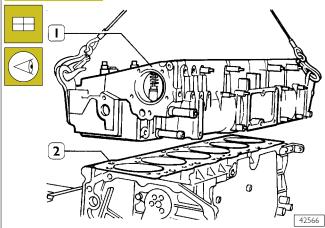
Clean the surface of the parts to be joined removing impurities and oil residuals. Apply silicon LOCTITE 275 (1) to the cover (2) as shown in the picture.


The diameter of the sealing string must be $1.5 \pm 0.5/0.2$.


Fit the front cover within 10 minutes after applying the sealer.

ASSEMBLY

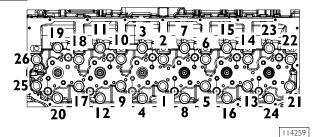
Figure 25



Install front cover (I) and lock retaining screw at required torque.

Secure seal (1), install special tool 99346260 (2), lock nut (3) to secure seal (1).

Figure 27


Check that pistons I-6 are exactly at T.D.C. Place seal (2) on cylinder block. Install cylinder head (1) and lock screws as shown in figures below.

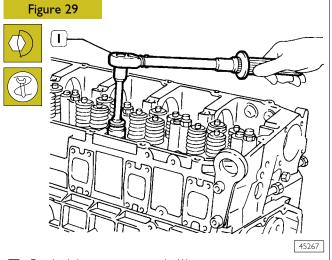
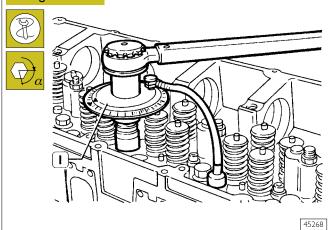

Removed screws must not be used again. Employ new screws only.

Figure 28



Cylinder head retaining screw locking sequence diagram.

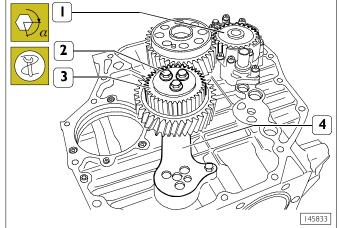

Pre-lock by torque wrench (1): 1st phase: 50 Nm (5 kgm); 2nd phase: 100 Nm (10 kgm).

Figure 30

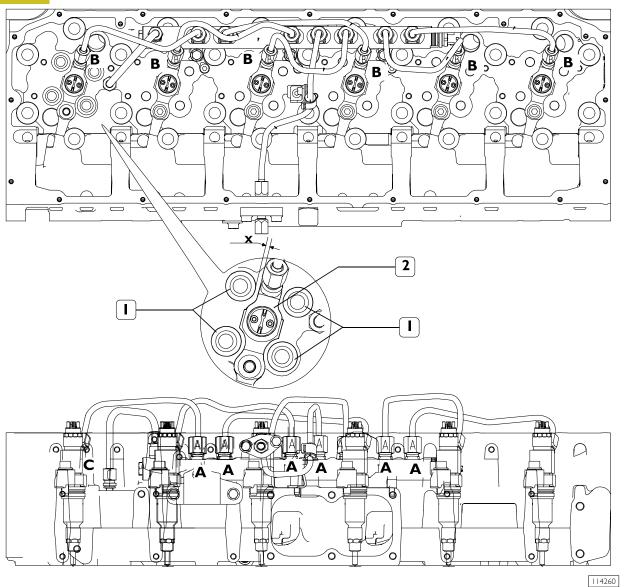

Angle locking by means of tool 99395216 (1): 3rd phase: 90° angle 4th phase: 75° angle.

Figure 31

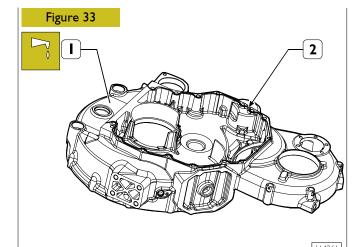
Install oil pump (1), double gear (3) complete with connecting rod (4) and lock screws (2) in two phases: pre-lock 30 Nm 90° angle lock

The previously removed pipes ca no longer be refit and must be replaced.

Lubricate the injector fastening O-Rings using the following lubricants: PDE SILIKONFETT 22, NLG 12, PDE LUBRICOMET GR 220 NLG12.

- Install rail on cylinder head and lock retaining screws by hand.
- 2. Install injectors in correct position and lock to required torque.

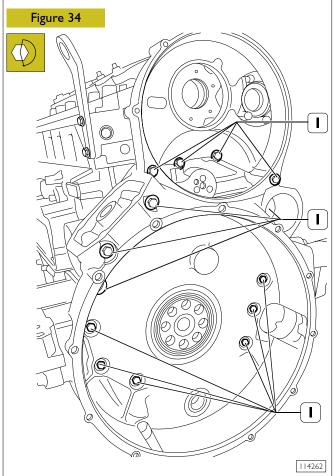
Check that the injectors (2) are equidistant from the springs (1). Distance "X" which separates them should always be the same.


- 3. Install pipes on rail and lock fittings by hand.
- Lock rail to cylinder head retaining screws at required torque.

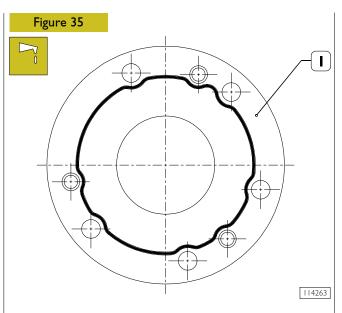
- 5. Fit pipes on injectors and head locking fittings by hand.
- 6. Lock fittings on rail (A, C) at required torque.
- 7. Lock fittings on injectors and head (B, C) at required torque.

TYPE	DESCRIPTION	LOCK TORQUE
Α	M18 x 1.5	40 ± 2 Nm
В	MI4 x I.5	35 ± 2 Nm
С	M16 x 1.5	40 ± 2 Nm

After fitting the high-pressure pipelines, during the following 20 hours of work, frequently check engine oil level (IT MUST NOT INCREASE).

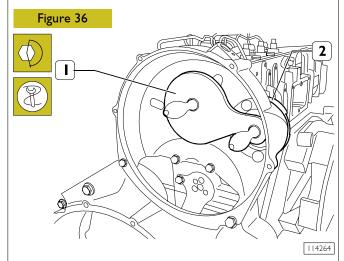


Clean surfaces to be coupled to remove dirt and oil residuals. Apply LOCTITE 275 (2) silicone on gear casing (1) as shown in the figure.


The sealant seam diameter must be $1.5 \pm 0.5/0.2$ mm.

Install gear casing within 10 min. from sealant application.

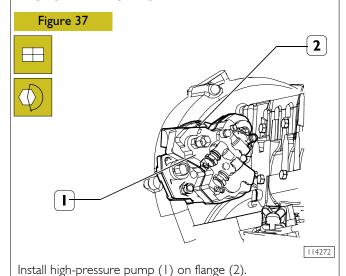
Use torque wrench to lock screws (I) at required torque.



Clean surfaces to be coupled to remove dirt and oil residuals. Apply LOCTITE 275 silicone on gear casing (1) as shown in the figure.

The sealant seam diameter must be $1.5 \pm 0.5/0.2$ mm.

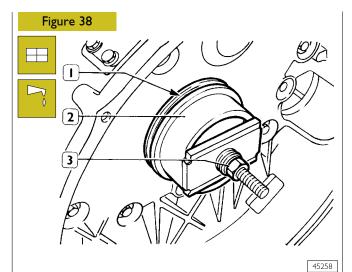
Install gear casing within 10 min. from sealant application.



Apply gage 99395221 (I) to check and adjust position of high-pressure pump connection flange (2).

Fix flange screws (2) at required torque.

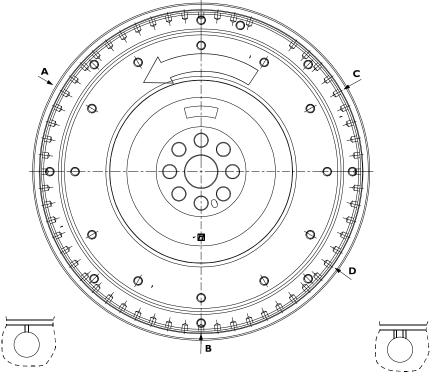
15


High pressure pump installation

ENGINE FLYWHEEL

NOTE If toothing on engine flywheel for engine start-up is very damaged, change crown wheel.

> Refit crown wheel after heating up at approx. 200°C.



Secure seal (1), install special tool 99346260 (2), lock nut (3) to secure seal.

Engine flywheel installation

NOTE Crankshaft has a reference pin that must match with related housing on engine flywheel.

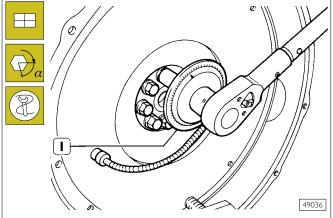
Figure 39

DETAIL OF PISTON POSITION STAMPING ON ENGINE FLYWHEEL

A. Hole on flywheel with a notch corresponding to pistons 3-4 TDC - B. Hole on flywheel with a notch, corresponding to piston I-6 TDC - C. Hole on flywheel with a notch corresponding to pistons 2-5 TDC - D. Hole on flywheel with 2 notches, position corresponding to 54°.

Print P2D32C006 E Base - May 2010

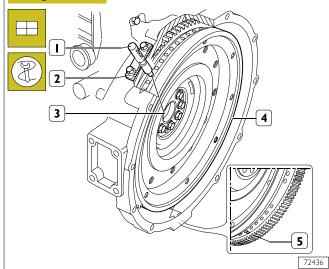
114265


Position flywheel (I) on crankshaft, lubricate screws (2) threading with engine oil and lock them.

Stop rotation using specific tool.

Lock screws (2) in three phases.

 I^{st} phase: pre-lock with torque wrench (3) at 100 Nm torque (10 kgm).

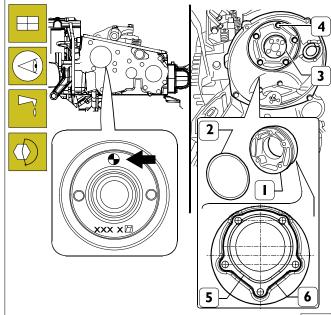

Figure 41

2nd phase: 60° angle locking using tool 99395216 (1).

Camshaft installation

Figure 42

Position crankshaft with pistons I and 6 at TDC.


This condition is obtained when:

- I. the opening with one reference (5) for the engine flywheel (4) is visible from the inspection window;
- 2. tool 99360612 (1), through housing (2) of engine rpm sensor, inserts in hole (3) drilled on engine flywheel (4).

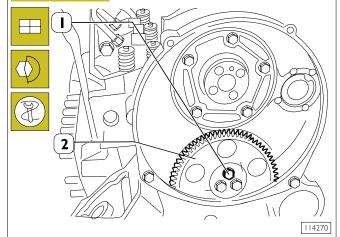
Otherwise, adjust engine flywheel orientation (4).

Remove too 99360612 (1).

Install camshaft (3) and orient it with references (\rightarrow) positioned as in the figure.

Clean the matching surfaces of the plate (I) to remove impurities and oil residues.

Apply silicon LOCTITE 275 (6) on the plate (1) as shown in the picture.

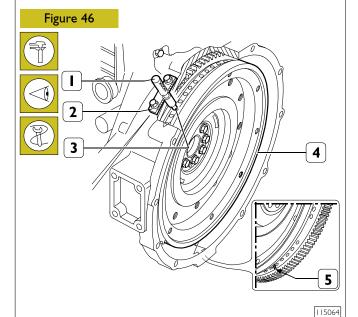

NOTE Take care NOT to get sealant on the inner groove (5).

The diameter of the sealant bead should be 1.5 - 0.5/0.2 mm.

Fit the plate (1) within 10 mins of applying the sealant with the gasket (2) and tighten the bolts (4) to the recommended torque.

Apply gage 99395222 (1), check and adjust position of connecting rod (3) for relay gear, lock screw (2) at required torque.

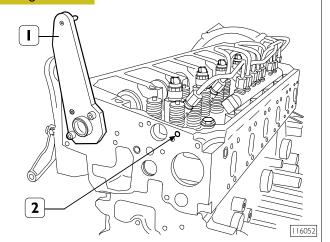
Figure 45


Refit relay gear (2) and lock screws (1) using six-splined spanner at required torque.

NOTE The relay gear (2) bushing can be replaced when worn out. After securing bushing, grind it to reach dia. 58.010 ± 0.10 mm.

TIMING CAMSHAFT AND FLYWHEEL USING TOOL 99395223

Timing camshaft


114269

Rotate the crankshaft with the tool 99360341 (3, Figure 53) so that the opening marked with two references (5) is visible from the lower inspection window in the flywheel cover casing.

In this condition, insert the tool 99360612(1) via the housing (2) for the engine rpm sensor in the opening (3) in the engine flywheel (4).

Figure 47

Fit the tool 99395223 (I) at the front of the camshaft.

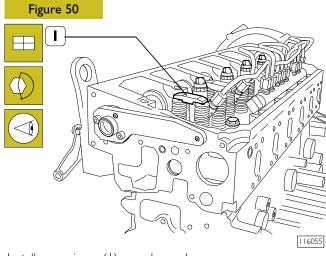
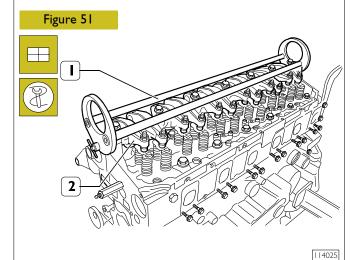

Rotate the tool (1) 99395223 in order to insert the pin (3) in the opening (2, Figure 47) in the head. Fasten the tool (1) 99395223 using two M8x1.25 bolts (2).

Figure 49 2 2

Fit the camshaft drive gear (1) so that the fastening openings in the shaft are aligned with the slots (2) in the drive gear.


Position the gear (1) taking care to position the spokes (4) as illustrated. This operation is necessary in order to be able to fit the flywheel correctly which can only be fitted in one position in relation to the gear.

Tighten the fixing bolts (3).

Install crosspieces (I) on valve rod.

NOTE Before refitting rocker arm shaft assembly, check that all adjustment screws have been fully unlocked.

Apply tool 99360558 (1) to rocker arm shaft (2) and install shaft on cylinder head.

Lock retaining screws at required torque.

Base - May 2010 Print P2D32C006 E

117691

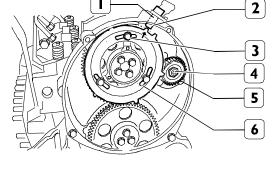

Timing flywheel

Figure 52

145834

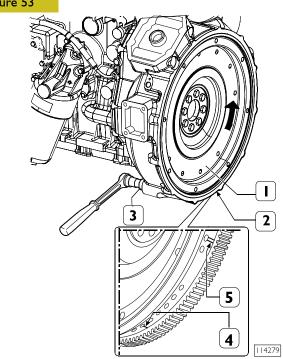
Fit the high pressure pump gear (5) tightening the nut (4) to torque.

Use the flat washer (PN 17095914) in conjunction with the nut (4) replacing the one supplied with the Bosch CP3 pump.

Fit the flywheel (6) so that the toothe marked with the arrow (\rightarrow) is in line with the sensor housing (2).

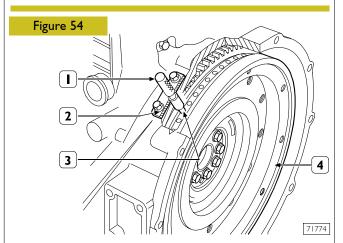
To check that the position is correct, insert tool (1) 99360613 in the timing sensor (2) housing.

Proceed with tightening the bolts (3).


Remove the tools 99395223, 99360612 and 99360613.

TIMING CAMSHAFT AND FLYWHEEL WITHOUT TOOL 99395223

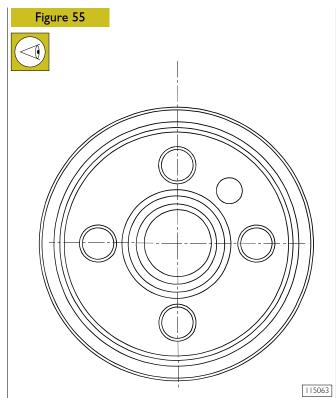
Timing camshaft



Secure special tool 99360341 (3) to gear casing.

NOTE The arrow indicated engine rotation direction.

Use tool above to rotate engine flywheel (I) in engine rotation direction to bring cylinder I piston approx. to TDC in blast phase.


This condition is reached when hole with notch (4), following hole with two notches (5) drilled on engine flywheel (1), is visible through manhole (2).

The exact position of piston no.1 at TDC is obtained when, in conditions described above, tool 99360612 (1), through engine rpm sensor housing (2), inserts in hole (3) drilled on engine flywheel (4).

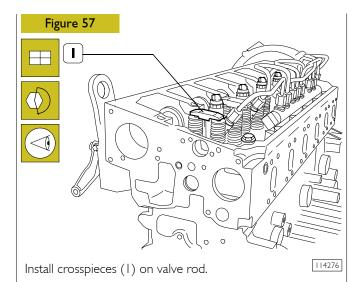

Otherwise, rotate engine flywheel (4) to adjust its orientation.

Print P2D32C006 E

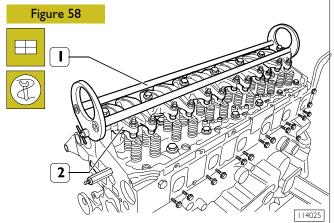
Rotate the camshaft so that the openings at the rear of the engine are arranged in the configuration illustrated in the diagram.

Figure 56

Install gear (1) controlling camshaft so that fastening holes on

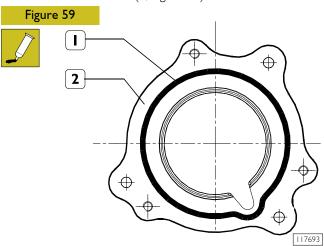

shaft coincide with slots (2) on control gear.

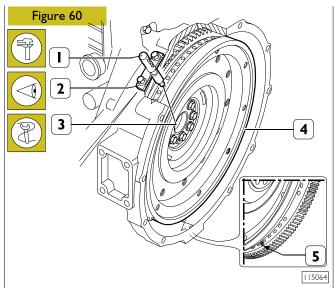
spokes (4) as illustrated.


NOTE Position the gear (I) taking care to position the

This operation is necessary in order to be able to fit the flywheel correctly which can only be fitted in one position in relation to the gear.

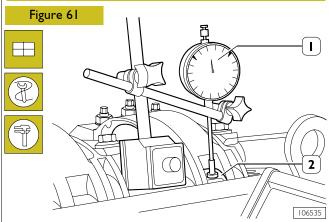
Lock retaining screws (3).


NOTE Before refitting rocker arm shaft assembly, check that all adjustment screws have been fully unlocked.


Apply tool 99360558 (I) to rocker arm shaft (2) and install shaft on cylinder head.

Lock retaining screws at required torque.

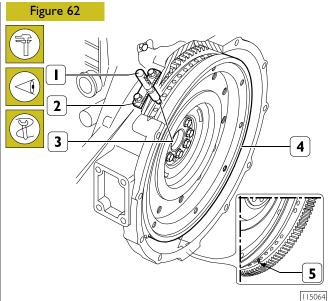
Remove tool 99360612 (1, Figure 54).


Clean the surface of the parts to be joined removing impurities and oil residuals. Apply silicon LOCTITE 275 (1) on the front cover (2) as shown in the picture. The diameter of the sealing string must be $1.5 \pm 0.5/0.2$ mm.

Rotate crankshaft to check conditions below:

- hole identified with two notches (5) is visible through manhole;
- 2) fixture 99360612 (1) through housing (2) of engine rpm sensor inserts in hole (3) on engine flywheel (4).

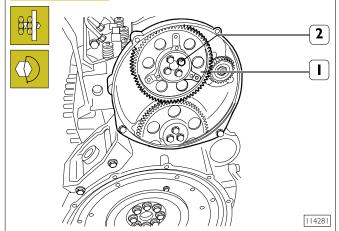
NOTE To recover the clearances, rotate the crankshaft in a clockwise direction until the opening with the two references is passed and then rotate in the opposite direction to produce the conditions described above.


Position the dial gauge with a magnetic base (I) with the (flat-based) rod positioned on the roller (2) for the rocker arms which controls the exhaust valve for cylinder no. 3 and apply a pre-loading of 6 mm.

NOTE During the measurement the rod for the dial gauge should always be perpendicular to the engine axis and NOT to the surface of the head.

Using tool 99360341 (3, Figure 53), rotate crankshaft clockwise till dial gage arrow reaches minimum value (max cam lift), after which it no longer varies.

Zero set dial gage.


Rotate engine flywheel anticlockwise till dial gage reads camshaft cam lift value = 4.70 ± 0.05 mm.

Camshaft is timed if conditions below are found at cam lift values 4.70 ± 0.05 :

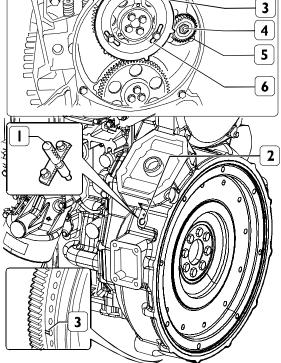
- hole identified with two notches (5) is visible through manhole;
- 2) fixture 99360612 (1) through housing (2) of engine rpm sensor inserts in hole (3) on engine flywheel (4).

Figure 63

In case conditions shown in Figure 62 and shown at paras I and 2 are not found, operate as follows:

- I) release screws (2) securing gear (1) of camshaft to as to make control gear and camshaft independent;
- conveniently operate on engine flywheel so as to obtain conditions indicated at paras I and 2, Figure 62, considering that cam lift value must remain unchanged;
- 3) lock screws (2) and repeat control as already described;
- 4) lock screws (2) at required torque.

Timing flywheel

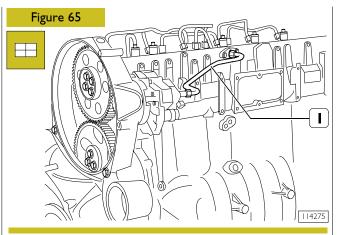

Figure 64

Install gear (5) of high pressure pump and lock nut (4) at required torque.

NOTE When refitting, use the flat washer (PN 17095914) in conjunction with the nut (4) replacing the one supplied with BOSCH pump CP3.

Rotate crankshaft and bring cylinder n. I piston to compression phase at TDC: Rotate flywheel opposite to regular rotation direction by 1/4 of rev.

Rotate flywheel again in regular rotation direction till hole identified by double notch (3, Figure 64, second box) shows through inspection hole under flywheel cover box.

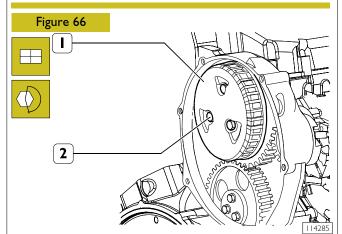

Insert tool 99360612 (I, Figure 64, second box) in flywheel sensor housing (2, Figure 64, second box).

Fit the flywheel (6) so that the tooth marked with the arrow (\uparrow) is in line with the sensor housing (2, Figure 64, first box).

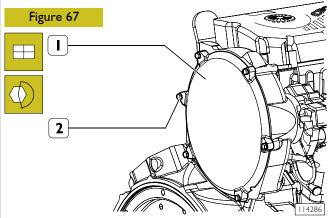
Insert tool 99360613 (1, Figure 64, first box) through phase sensor housing (2, Figure 64, first box) on tooth machined on tune wheel.

In case tool (I, Figure 64, first box) is difficult to insert, unlock screws (3, Figure 64, first box) and orient tune wheel (6) to properly match the tooth (1, Figure 64, first box).

Lock screws (3, Figure 64, first box).

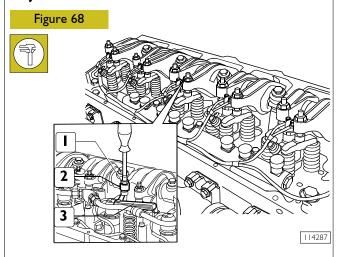

NOTE Pipes previously removed ca no longer be refit. Change them.

Install fuel supply pipeline (1) from high pressure pump to rail. Lock nuts at 35 Nm torque.



2

After high-pressure pipe installation, during the following 20 hours of work, frequently check engine oil level (IT MUST NOT INCREASE).

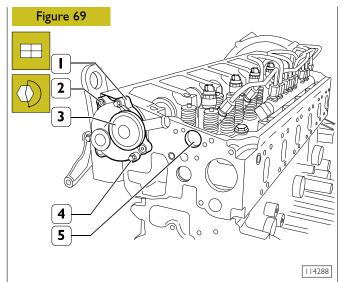


Install centrifugal filter (1) on tune wheel and lock screws (2) at required torque.

Install timing cover (1) and lock retaining screws (2) at required torque.

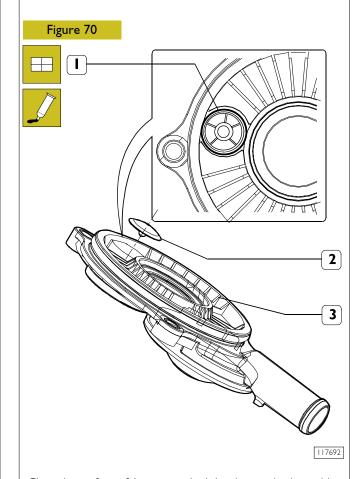
Intake and exhaust rocker arm clearance adjustment

Adjustment of clearance between rocker arms and intake/exhaust valve control crosspieces must be performed with utmost care. Bring to blast phase cylinder to be adjusted; the valves of this cylinder are closed while the symmetric cylinder valves are balanced. Symmetric cylinders are 1-6; 2-5 and 3-4.

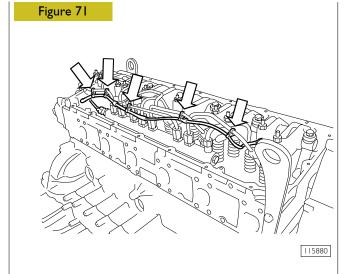

In order to perform these operations correctly, refer to procedure and table below.

- Use a polygonal spanner to release lock nut (1) of rocker arm adjustment screw (2).
- Insert filler gage (3) having same value of operating clearance shown in "Characteristic and data" tables.
- Use special spanner to lock/unlock adjustment screw.
- Check that filler gage (3) slides with a low friction.
- Lock nut (1) retaining the adjustment screw.

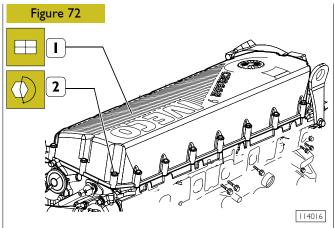
IGNITION ORDER 1-4-2-6-3-5

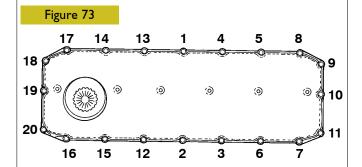

START AND ROTATION CLOCKWISE	BALANCE VALVES OF CYLINDER No.	ADJUST CLEARANCE OF VALVES CYLINDER No.
I and 6 at TDC	6	
120°	3	4
120°	5	2
120°	I	6
120°	4	3
120°	2	5

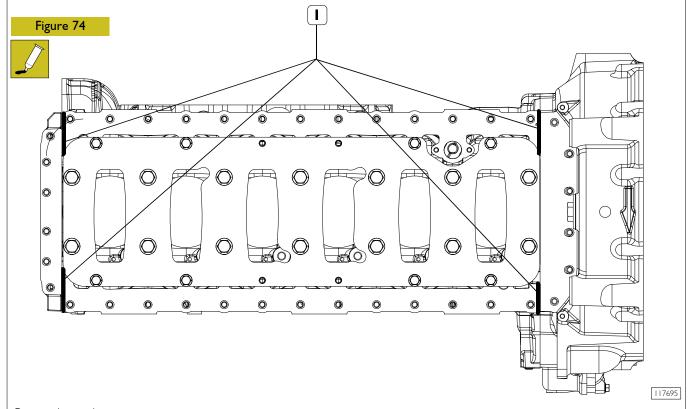
NOTE In order to correctly carry out adjustments above, it is mandatory to perform the sequence indicated in the table, checking exact positioning at each phase by means of pin 99360612.



Install blow-by body (1) with related seal and lock screws (2) at required torque.


Install cover (3) and lock screws (4) at required torque.

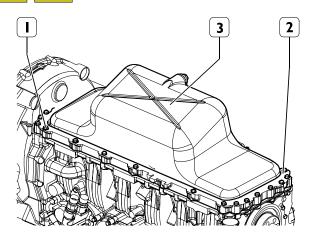

Clean the surface of the parts to be joined removing impurities and oil residuals. Apply silicon LOCTITE 406 within the check valve (2) housing (1) and on the Blow-by (3) as shown in the picture.



Fit the head internal electric wire (injectors+pressure sensor) passing it through the opening (5, Figure 69) and securing it using bands as illustrated in the diagram (\downarrow).

Install cylinder head cover (1) and lock screws (2) at required torque following order shown in Figure 73 diagram.

Rotate the engine


Before assembling the suction rose, it is necessary to seal the contact area (1) between basement, flywheel casing and front cover with LOCTITE, following the herein instructions. Clean the surfaces of the parts to be joined removing impurities and oil residuals. Apply silicon LOCTITE 275 (1) as shown in the picture. The diameter of the sealing string must be $1.5 \pm 0.5/0.2$ mm.

Install suction rose (1).

Figure 76

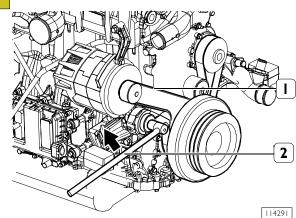
114029

114031b

Fit seal on oil sump (3), fit spacer (2) and install sump on engine block locking screws (1) at required torque.

ENGINE ASSEMBLY COMPLETION

Complete engine assembly fitting or connecting parts below:

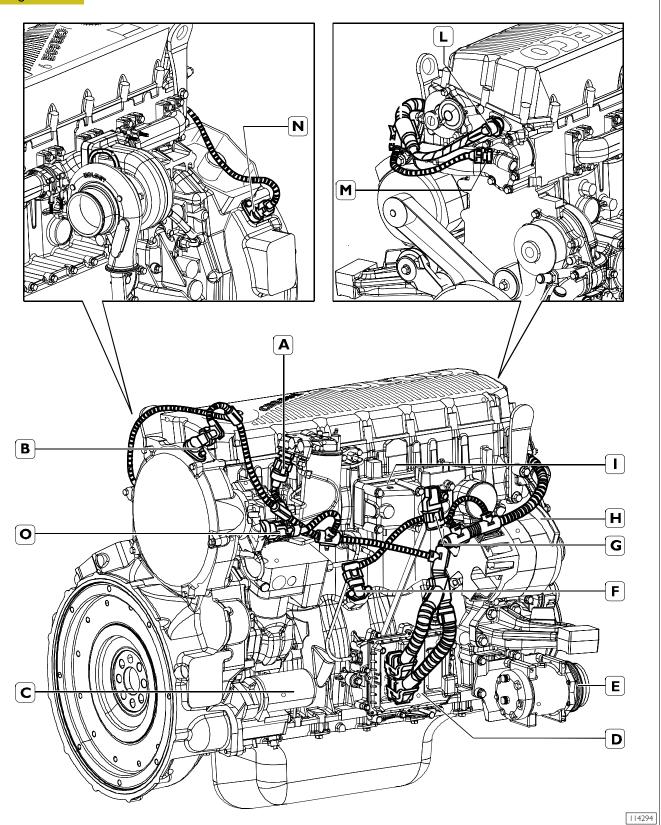

- complete fuel filter support and pipelines;
- EDC ecu;
- intake manifold with pre-heating resistor;
- heat exchanger;
- exhaust manifold;
- turbocharger and related water and oil;
- pulley and damper flywheel assy (install fixed guide pulley 5, Figure 4, before assy);
- thermostat assy;
- belt tensioner, water pump, alternator;
- oil level rod;
- start-up motor;
- oil filter;
- electric connections and sensors (See diagram on page 30).

NOTE Fittings of pipelines, cooling water and turbocharger lube oil must be locked at:

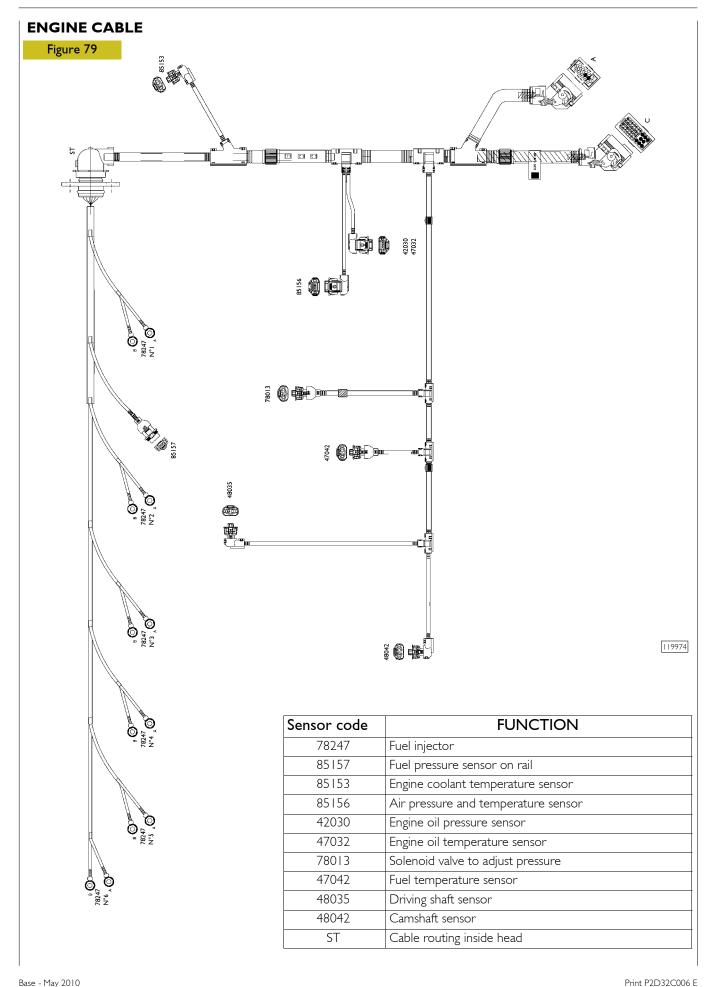
- 35 ± 5Nm, water pipeline fittings;
- 55 ± 5Nm, oil pipeline female fitting;
- 20-25 Nm, oil pipeline make fitting.

Figure 77

Use specific equipment (2) to install belt (1) on belt tensioner, in direction shown by arrow.


NOTE Belt tensioner is automatic, therefore no further adjustments are required after installation.

27


F2C CURSOR ENGINES

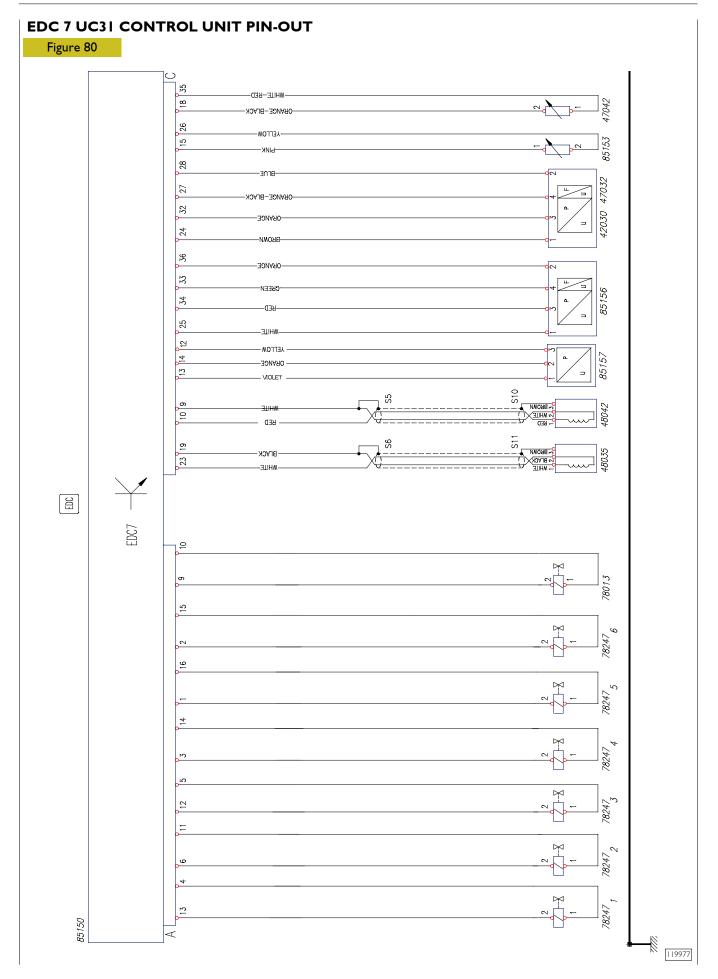
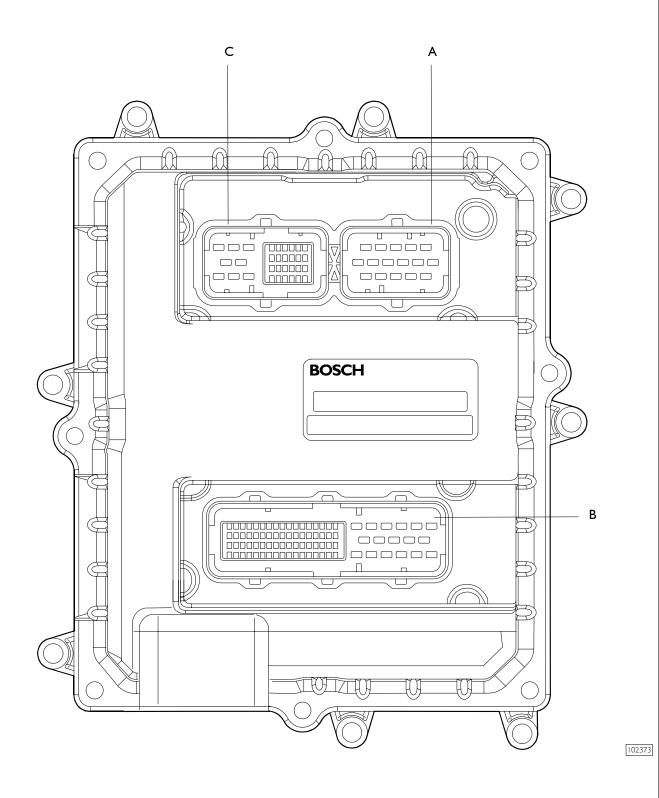
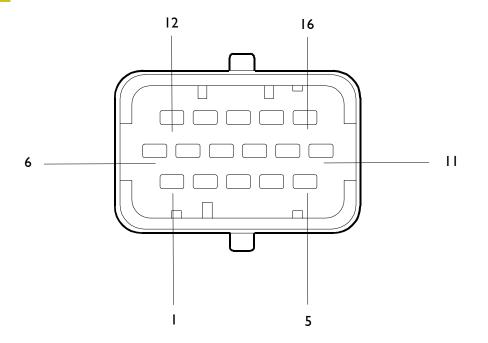

COMPONENTS ON THE ENGINE F2C

Figure 78


A. Fuel temperature sensor - B. Engine rpm sensor on camshaft - C. Starter motor - D. EDC 7 control unit - E. Conditioner compressor - F. Pressure/temperature transmitter - G. Temperature/air pressure sensor - H. Alternator - I. Resistance for engine warming - L. Connector on engine block for connection with electro-injectors - M. Water temperature sensor - N. Engine speed on flywheel sensor - O. Fuel adjustment valve on high pressure pump

EDC 7 UC31 ELECTRONIC CONTROL UNIT

Figure 81


A. Electro-injector connector - B. Chassis connector - C. Sensor connector

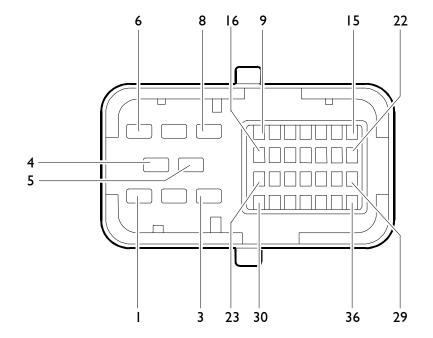
Base - May 2010

102374

EDC CONTROL UNIT PIN-OUT Electric injector connector "A"

Figure 82

Colour legend

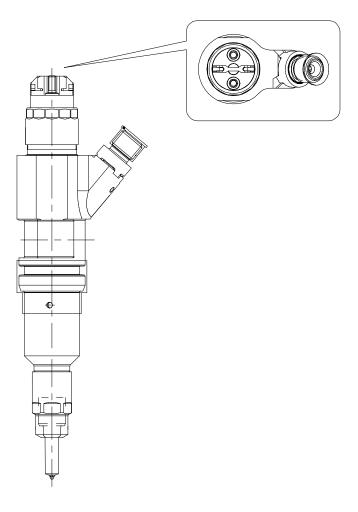

В	black
R	red
U	blue
W	white
Р	purple
G	green
Ν	brown
Υ	yellow
0	orange
E	grey
K	pink

Pin	Function	
I	Solenoid valve for electronic cylinder 5 injection	
2	Solenoid valve for electronic cylinder 6 injection	
3	Solenoid valve for electronic cylinder 4 injection	
4	Solenoid valve for electronic cylinder 1 injection	
5	Solenoid valve for electronic cylinder 3 injection	
6	Solenoid valve for electronic cylinder 2 injection	
7	-	
8	_	
9	_	
10	_	
11	Solenoid valve for electronic cylinder 2 injection	
12	Solenoid valve for electronic cylinder 3 injection	
13	Solenoid valve for electronic cylinder I injection	
14	Solenoid valve for electronic cylinder 4 injection	
15	Solenoid valve for electronic cylinder 6 injection	
16	Solenoid valve for electronic cylinder 5 injection	

102375

Sensor connector "C"

Figure 83



Colour	· legend
В	black
R	red
U	blue
W	white
Р	purple
G	green
Ν	brown
Υ	yellow
0	orange
E	grey
K	pink

Pin	Function		
I÷8	-		
9	Engine speed sensor (timing)		
10	Engine speed sensor (timing)		
11	-		
12	Pressure sensor on rail		
13	Pressure sensor on rail		
14	Pressure sensor on rail		
15	Coolant temperature sensor		
16	-		
17			
18	Fuel temperature sensor		
19	Engine speed sensor (flywheel)		
20	-		
21	-		
22	-		
23	Engine speed sensor (flywheel)		
24	Engine oil pressure/temperature sensor		
25	Air pressure/temperature sensor supply		
26	Coolant temperature sensor		
27	Engine oil temperature/pressure sensor		
28	Engine oil temperature/pressure sensor		
29			
30			
31			
32	Engine oil temperature/pressure sensor		
33	Air pressure signal from air pressure/temperature sensor		
34	Air temperature signal from air pressure/temperature sensor		
35	Fuel temperature sensor		
36	Air temperature signal from air pressure/temperature sensor		

Electroinjectors

Figure 84

114255

It is a N.O. solenoid valve.

They are connected to the EDC ECU on connector A.

The resistance of each injector coil is 0.56 - 0.57 Ohm.

The electroinjector can be considered as consisting of 2 parts:

- actuator atomizer including pressure rod, needle and nozzle;
- ontrol solenoid valve including coil and pilot valve.

The solenoid valve controls atomizer needle lift.

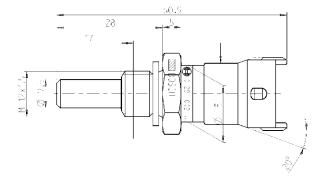
INJECTION START

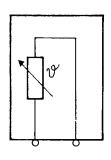
When coil is energized, lock pin moves upward.

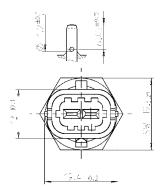
The control volume fuel flows to return duct causing control volume pressure drop.

At the same time, fuel pressure in pressure chamber causes needle uplift and therefore fuel injection in cylinder.

END OF INJECTION


When coil is de-energized, lock pin returns to lock position to look for a force balance such to return to needle close position and stop injection.


Engine coolant temperature sensor


This N.T.C. type sensor located on the water outlet sump on the engine head left measures coolant temperature for the various operating logics with a hot or cold engine and identifies injection enrichment requirements for a cold engine or fuel reduction requirements for a hot engine.

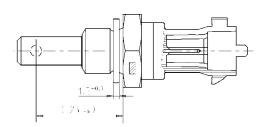
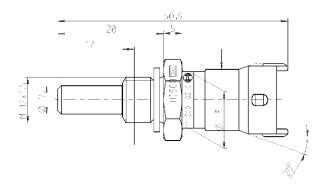

It is connected to electronic center pins 15/26.

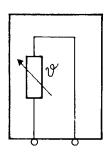
Figure 85

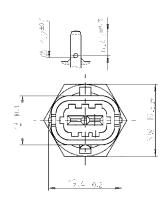
104266

Description	Cable colour
To EDC center pin 15 (Sensor connector "C")	K
To EDC center pin 26 (Sensor connector "C")	

Fuel temperature sensor


Specifications


Supplier


Max. tightening torque

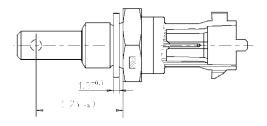

BOSCH 35 Nm

Figure 86

104267

Description	Cable colour
To pin 18 of EDC control unit (Sensor connector "C")	O/B
To pin 35 of EDC control unit (Sensor connector "C")	W/R

High pressure pump (pressure regulator)

Pump with 3 radial pistons commanded by timing gear, requiring no tuning, with rotor supply pump applied on rear end.

- A. Fuel drain outlet fitting to filter support
- B. Fuel inlet fitting from ECU heat exchanger
- C. Fuel inlet fitting from fuel filter
- D. Fuel outlet fitting from supply pump to filter
- E. Fuel outlet fitting to rail
- I. High-pressure pump
- 2. Supply pump
- **3.** Pressure regulator (NO solenoid valve modulated by ECU with PWM signal).

Pressure regulator

Located at high-pressure pump inlet, on low pressure system, it modulates the amount of fuel for high-pressure pump supply based on commands received from ECU.

It mainly consists of parts below:

\Box	trapezoidal-section	lock	pin:
	ti apezoidai sectioni	IOCK	P" ',

_ h	1/2/1/0	control	nin
	vaive	COLLLO	DII I.

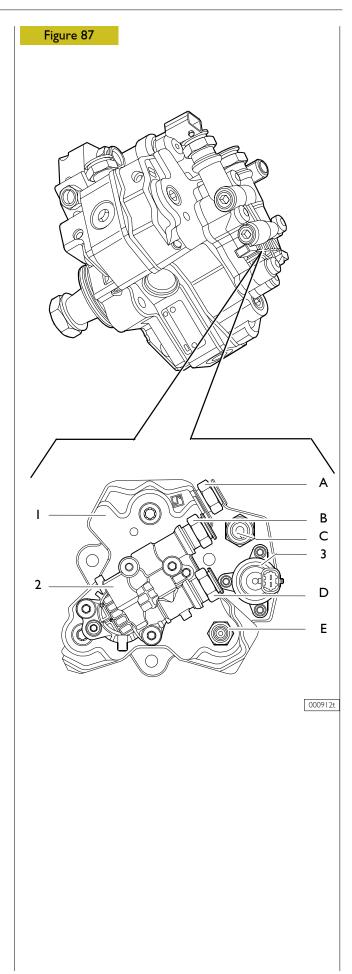
pre-load valve;

coils.

When no control signal is present, the pressure regulator is normally open, therefore the high pressure pump is in max delivery condition.

The ECU modulates a PWM control signal to extend or reduce section of fuel supply line to high-pressure pump.

The component cannot be replaced as an individual part, therefore it cannot be removed.

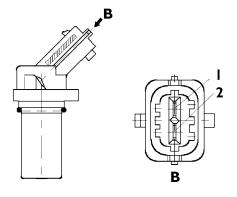

The quantity of high-pressure supply fuel is metered by a proportional valve positioned on low-pressure system and it is managed by the ECDC 7 ECU.

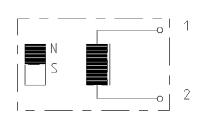
The delivery pressure to rail is modulated between 250 and 1400 bars by ECU operating on pressure regulator solenoid valve.

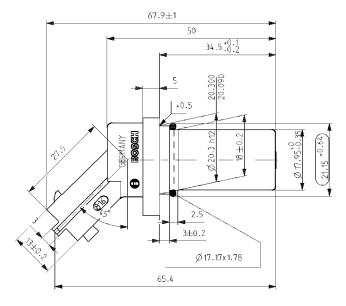
It is a NO solenoid valve.

Its resistance is $\sim 3.2 \Omega$.

It is connected to ECU pins C5 - C7.




Flywheel pulse transmitter


Specifications

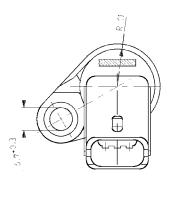

Supplier Max. tightening torque BOSCH 8 ± 2 Nm

Figure 88

104269

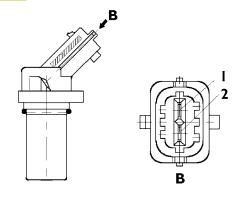
Description	Cable colour
To EDC center pin 19 (Sensor connector "C")	
To EDC center pin 23 (Sensor connector "C")	W

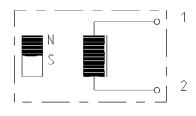
Distribution pulse transmitter

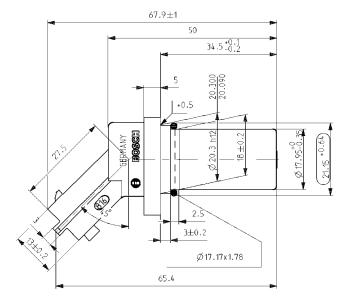
Features

Vendor Torque BOSCH 8 ± 2 Nm

Resistance


 $880 \div 920 \Omega$


This induction type sensor located on the camshaft generates signals obtained from the magnetic flow lines that close through the 6 plus I phase teeth of a sound wheel mounted on the shaft.


The electronic center uses the signal generated by this sensor as an injection step signal.

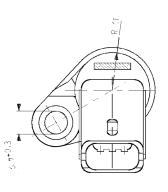

This sensor's air gap is NOT ADJUSTABLE.

Figure 89

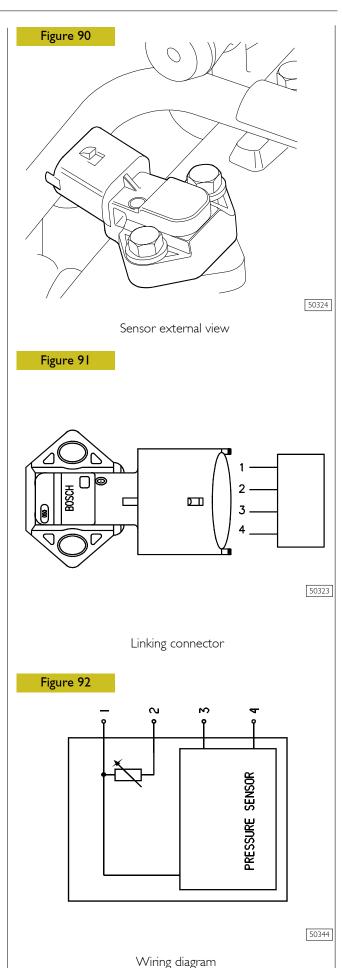
104269

Description	Cable colour
To EDC center pin 9 (Sensor connector "C")	W
To EDC center pin 10 (Sensor connector "C")	

Oil temperature/pressure sensor (42030 / 47032)

This component is identical to the air pressure/temperature sensor and replaced single sensors 47032 / 42030.

It is fitted onto the engine oil filter, in a horizontal position.


It measures the engine oil temperature and pressure.

The measured signal is sent to the EDC control unit which controls, in turn, the indicator instrument on the dashboard (low pressure warning lights / gauge).

Pin (EDC)	24/C - 32/C	Power supply
Pin (EDC)	27/C	Pressure
Pin (EDC)	28/C	Temperature

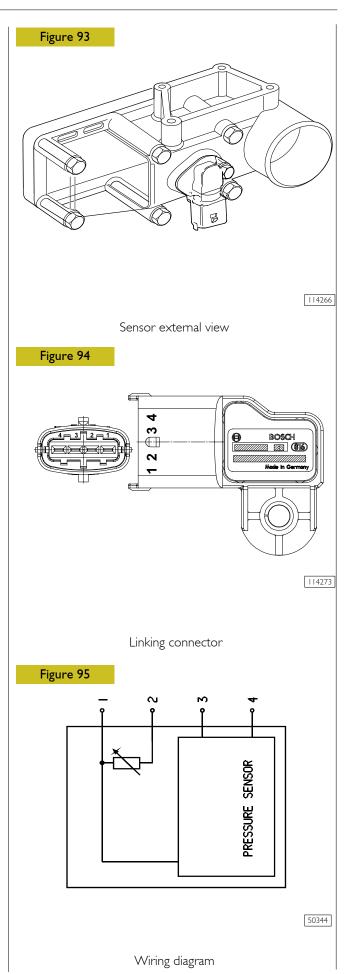
The engine oil temperature is used only by the EDC control unit.

Ref.	Description	Control unit pin
1	Ground	24C
2	Temp. Sign.	28C
3	+5	32C
4	Press. Sign.	27C

Air pressure/temperature sensor (85156).

This component incorporates a temperature sensor and a pressure sensor.

Ilt replaces the temperature sensors (85155) and pressure sensors (85154) available in the preceding systems.


It is fitted onto the intake manifold and measures the maximum supplied air flow rate used to accurately calculate the amount of fuel to be injected at every cycle.

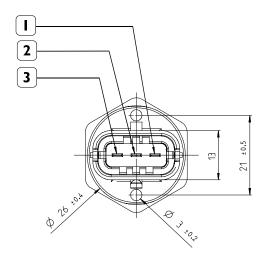
The sensor is powered with 5 V.

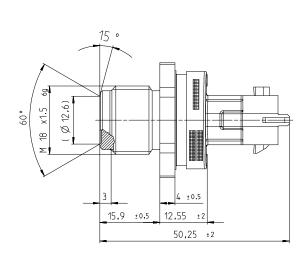
The output voltage is proportional to the pressure or temperature measured by the sensor.

Pin (EDC)	25/C - 33/C	Power supply
Pin (EDC)	36/C	Temperature
Pin (EDC)	34/C	Pressure

Ref.	Description	Control unit pin
I	Ground	25C
2	Temp. Sign.	36C
3	+5	33C
4	Press. Sign.	34C

Fuel pressure sensor on rail

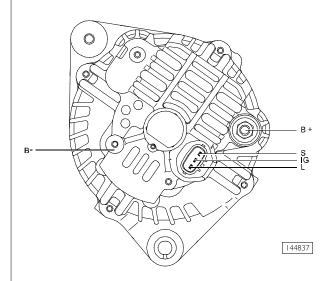

Installed on one rail end, it measures actual fuel pressure in order to determine injection pressure.


The injection pressure value is used for pressure check and to determine the injection electric command duration.

It is supplied with 5 volts.

It is connected to ECU on pins 12C - 13C - 14C.

Figure 96


114620

Ref.	Description	Pin ecu
I	ECU pin	I2C
2	Ground	I3C
3	Supply Pressure	I4C

Alternator

Supplier Technical features MITSUBISHI 24V - 90A

Figure 97

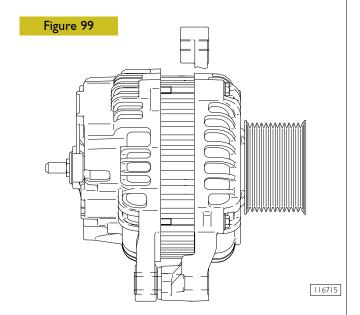


Figure 98

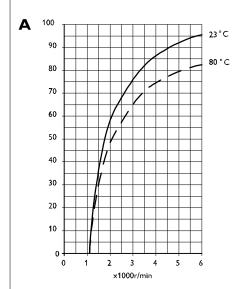
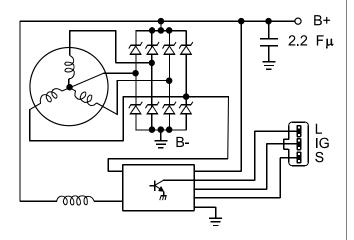
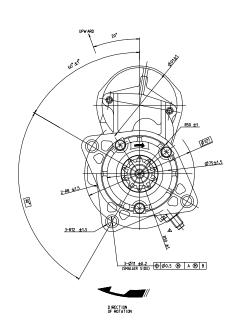



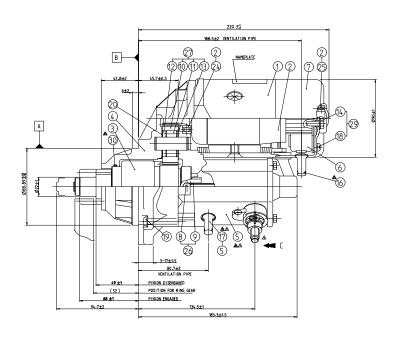
Figure 100

144836

116716

Pin	Description
S	+ 30
L	Battery recharge light
B-	Negative
B+	Positive
IG	+ 15


Base - May 2010


Starting motor

Specifications

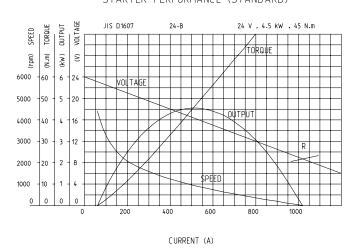

Supplier Type Electrical system Nominal output DENSO 2280005641 24 Volt 4.5 Kw

Figure 101

STARTER PERFORMANCE (STANDARD)

STARTER SOLENOID 50

BATTERY

MOTOR

CONNECTING DIAGRAM

114283

EDC SYSTEM FUNCTIONS

The EDC 7 UC31 electronic center manages the following main functions:

Fuel injection

Accessory functions such as cruise control, speed limiter, PTO and the like Self-diagnosis

Recovery

It also enables:

Interfacing with other electronic systems (if any) available on the vehicle

Diagnosis

Fuel dosing

Fuel dosing is calculated based on:

- accelerator position
- engine rpm
- quantity of air admitted.

The result can be corrected based on:

- water temperature

or to prevent:

- noise
- fumes
- overloads
- overheating

Pressure can be adjusted in case of:

- engine brake actuation
- external device actuation (e.g. speed reducer, cruise control)
- serious defects involving load reduction or engine stop.

After determining the mass of air introduced by measuring its volume and temperature, the center calculates the corresponding mass of fuel to be injected into the cylinder involved, with account also taken of gas oil temperature.

Delivery correction based on water temperature

When cold, the engine encounters greater operating resistance, mechanical friction is high, oil is till very viscous and operating plays are not optimized yet.

Fuel injected also tends to condense on cold metal surfaces.

Fuel dosing with a cold engine is therefore greater than when hot.

Delivery correction to prevent noise, fumes or overloads

Behaviors that could lead to the defects under review are well known, so the designer has added specific instructions to the center to prevent them.

De-rating

In the event of engine overheating, decreasing delivery proportionally to the temperature reached by the coolant changes injection.

Injection lead electronic control

Injection lead, or the start of fuel delivery expressed in degrees, can differ from one injection to the next, even from one cylinder to another and is calculated similarly to delivery according to engine load, namely, accelerator position, engine rpm and air admitted. Lead is corrected as required:

- during acceleration
- according to water temperature

and to obtain:

- reduced emissions, noise abatement and no overload
- better vehicle acceleration

High injection lead is set at start, based on water temperature.

Delivery start feedback is given by injection electro valve impedance variation.

Engine start

Cylinder I step and recognition signal synchronization (flywheel and drive shaft sensors) takes place at first engine turns. Accelerator pedal signal is ignored at start. Star delivery is set exclusively based on water temperature, via a specific map. The center enables the accelerator pedal, when it detects flywheel acceleration and rpm such as to consider the engine as started and no longer drawn by the starter motor.

Run Up

When the ignition key is inserted, the center transfers data stored at previous engine stop to the main memory (Cf. After run), and diagnoses the system.

After Run

At each engine stop with the ignition key, the center still remains fed by the main relay for a few seconds, to enable the microprocessor to transfer some data from the main volatile memory to an non-volatile, cancelable and rewritable (Eeprom) memory to make tem available for the next start (Cf. Run Up).

These data essentially consists of:

- miscellaneous settings, such as engine idling and the like
- settings of some components
- breakdown memory

The process lasts for some seconds, typically from 2 to 7 according to the amount of data to be stored, after which the ECU sends a command to the main relay and makes it disconnect from the battery.

This procedure must never be interrupted, by cutting the engine off from the battery cutout or disconnecting the latter before 10 seconds at least after engine cutout.

In this case, system operation is guaranteed until the fifth improper engine cutout, after which an error is stored in the breakdown memory and the engine operates at lower performance at next start while the EDC warning light stays on.

Repeated procedure interruptions could in fact lead to center damage.

Cut-off

It refers to the supply cut-off function during deceleration.

Cylinder Balancing

Individual cylinder balancing contributes to increasing comfort and operability.

This function enables individual personalized fuel delivery control and delivery start for each cylinder, even differently between each cylinder, to compensate for injector hydraulic tolerances.

The flow (rating feature) differences between the various injectors cannot be evaluated directly by the control unit. This information is provided by the entry of the codes for every single injector, by means of the diagnosis instrument.

NOTE Not present on agricultural versions.

Synchronization search

The center can anyhow recognize the cylinder to inject fuel into even in the absence of a signal from the camshaft sensor. If this occurs when the engine is already started, combustion sequence is already acquired, so the center continues with the sequence it is already synchronized on; if it occurs with the engine stopped, the center only actuates one electro valve. Injection occurs onside that cylinder within 2 shaft revs at the utmost so the center is only required to synchronize on the firing sequence and start the engine.

PART THREE - TROUBLESHOOTING	

49

SECTION 3 - INDUSTRIAL APPLICATION

F2C CURSOR ENGINES

PREFACE

A successful troubleshooting is carried out with the competence acquired by years of experience and attending training courses.

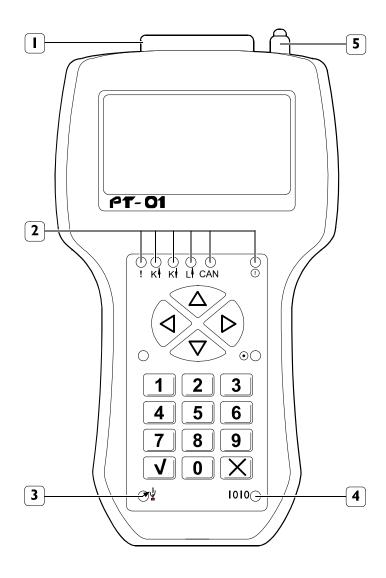
When the user complains for bad efficiency or working anomaly, his indications must be kept into proper consideration using them to acquire any useful information to focus the intervention.

Using FPT processing instruments, it is also possible to establish a bi-directional connection with the central unit, by which not only to decoding the failure codes but also input an enquiry relying on memory files, in order to achieve any further necessary information to identify the origin of the anomaly.

Every time there is a breakdown claim and this breakdown is actually detected, it is necessary to proceed inquiring the electronic unit in one of the ways indicated and then proceed with the diagnostic research making trials and tests in order to have a picture of the working conditions and identify the root causes of the anomaly.

In case the electronic device is not providing any indication, it will be necessary to proceed relying on the experience, adopting traditional diagnosis procedures.

NOTE Any kind of operation on the electronic center unit must be executed by qualified personnel, duly authorized by FPT.


Any unauthorized tamper will involve decay of after-sales service in warranty.

DIAGNOSTIC EQUIPMENT

PT-01

PT-01 tester should be used with a Laptop but can be also used singly.

Figure 102

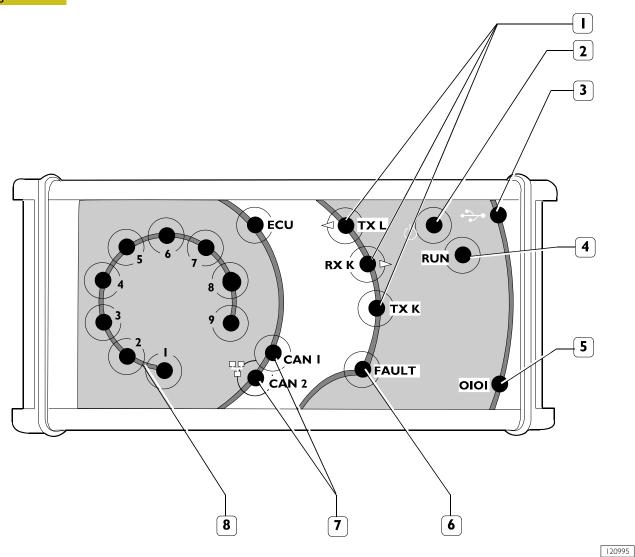
117696

I. Connector with 19-pin diagnosis socket - 2. LED signalling communication between the in-strument - control unit and correct power supply - 3. USB indicator light - 4. Serial port indicator light - 5. Power supply connector (power only to update SW with serial port).

Using PT-01 with portable tester it is possibile to execute troubleshooting and test the electronic module of engines. Main functions:

- ECU ID reading;
- Failure memory reading;
- Flight recorder reading;
- Parameters reading;
- Failure memory cleaning;
- Active diagnosis: actuators activation/testing

Operation without a personal computer


When the connection between the instrument and the diagnosis socket has been establish, the instrument displays the available applications.

Select the application on the numerical keyboard $(0 \div 9)$ and confirm with

PT - BOX

PT - BOX is a test tool to be connected to a Personal Computer .

Figure 103

Data flow lamps (blinking) - 2. Ignition indicator - 3. USB indicator - 4. Operation indicator - 5. Serial port indicator - 6. "Error" indicator - 7. CAN line indicator - 8. Line K indicator for automatic management

With the PT-BOX you can perform:

- Basic testing: central unit ID reading, failure memory reading, parameter reading, failure memory clearing and "Flight Recorder" memory reading;
- Active testing: main component testing (actuators, contactors, etc..);
- "Flight Recorder" reading;
- ☐ ECU acknowledgement of replaced electronic components;
- ☐ 2nd level and PTO programming;
- Parameter acquisition during operation tests.

FAULT CODES

Failure code	Failure description
	Vehicle I ((Sensors / Consistency tests)
1.1.2	ACCELERATOR PEDAL
1.1.9	PLAUSIBILITY + 15
1.1.A	PLAUSIBILITY +50
	Vehicle 2 (Indicator lamps / Relais / Actuators)
1.2.3	EDC LAMP
1.2.5	MAIN RELAY DEFECT
1.2.6	BATTERY VOLTAGE
1.2.8	MAIN RELAY - SHORT CIRCUIT TO BATTERY
1.2.9	AIR-CONDITIONER COMPRESSOR RELAY
1.2.B	THERMOSTARTER RELAY I (HEATER)
1.2.E	MANAGEMENT SYSTEM PRE/POST-HEATING (ACTIVE)
2.2.5	INTERRUPTED AFTER-RUN
2.2.8	MAIN RELAY - SHORT CIRCUIT TO GROUND
	Engine 1 (Temperature and pressure sensors)
1.3.1	COOLANT TEMPERATURE SENSOR
1.3.2	COOLANT TEMPERATURE SENSOR (TEST)
1.3.3	AIR TEMPERATURE SENSOR BOOST AIR
1.3.4	BOOST PRESSURE SENSOR
1.3.5	FUEL TEMPERATURE SENSOR
1.3.6	RAIL PRESSURE SENSOR OR SIGNAL ERROR
1.3.7	DBV VALVE MANAGEMENT (BOOST PRESSURE)
1.3.8	OIL PRESSURE SENSOR
1.3.A	OIL TEMPERATURE SENSOR
2.3.2	COOLANT TEMPERATURE SENSOR ABSOLUTE TEST
2.3.6	RAIL PRESSURE SENSOR OFFSET
2.3.8	OIL LOW PRESSURE
2.3.A	OIL TEMPERATURE ABOVE NORMAL
	Engine 2 (Speed sensors/actuators)
1.4.1	CRANKSHAFT SPEED
1.4.2	ENGINE WORKING ONLY WITH CAMSHAFT SENSOR
1.4.3	CAMSHAFT SENSOR
1.4.4	FAULT BETWEEN FLYWHEEL SENSOR AND CAMSHAFT
	Damage information
1.4.D	ENGINE OVERSPEED
1.5.B	HIGH PRESSURE TEST (DEACTIVATES RAIL PRESS.MONITORING)
1.9.D	INDICATES TORQUE LIMITATION DUE TO PERFORMANCE LIMITER
4.9.E	INDICATES THE TORQUE LIMITATION DUE TO ENGINE PROTECTION
6.9.E	INDICATES TORQUE LIMITATION DUE TO FUEL QUANTITY LIMITATION

Failure code	Failure description		
Fuel metering			
1.5.1	HIGH PRESSURE SYSTEM		
1.5.2	FAULT ON THE FUEL PRESSURE CONTROL OF THE RAIL (POSITIVE DEVIATION)		
1.5.3	FAULT ON THE FUEL PRESSURE CONTROL OF THE RAIL (NEGATIVE DEVIATION)		
1.5.4	RAIL PRESSURE ERROR: TOO LOW		
1.5.5	RAIL PRESSURE ERROR: TOO HIGH		
1.5.6	HIGH PRESSURE SYSTEM		
1.5.7	ERROR ON THE RAIL PRESSURE (EXCESSIVE DUTY CYCLE)		
1.5.8	HIGH PRESSURE SYSTEM		
1.5.9	PRESSURE MPROP REGULATOR ERROR		
2.5.9	PRESSURE MPROP REGULATOR ERROR (SHORT CIRCUIT TO POSITIVE)		
3.5.9	SHORT CIRCUIT TO GROUND OF METERING UNIT OUTPUT		
	Injectors I		
1.6.1	INJECTOR CYLINDER I / SHORT CIRCUIT		
1.6.2	INJECTOR CYLINDER 2 / SHORT CIRCUIT		
1.6.3	INJECTOR CYLINDER 3 / SHORT CIRCUIT		
1.6.4	INJECTOR CYLINDER 4 / SHORT CIRCUIT		
1.6.5	INJECTOR CYLINDER 5 / SHORT CIRCUIT		
1.6.6	INJECTOR CYLINDER 6 / SHORT CIRCUIT		
1.6.7	INJECTOR CYLINDER I / OPEN CIRCUIT		
1.6.8	INJECTOR CYLINDER 2 / OPEN CIRCUIT		
1.6.9	INJECTOR CYLINDER 3 / OPEN CIRCUIT		
1.6.A	INJECTOR CYLINDER 4 / OPEN CIRCUIT		
1.6.B	INJECTOR CYLINDER 5 / OPEN CIRCUIT		
1.6.C	INJECTOR CYLINDER 6 / OPEN CIRCUIT		
1.6.E	THE MINIMUM NUMBER OF INJECTIONS WAS NOT REACHED: STOP THE ENGINE		
	Injectors 2		
1.7.1	BENCH I CC		
1.7.3	BENCH 2 CC		
1.7.C	BENCH I INJECTORS CHECK (INTERNAL ECU)		
2.7.C	BENCH 2 INJECTORS CHECK (INTERNAL ECU)		
	Boosting system and turbine speed		
1.9.E	TORQUE REDUCTION DUE TO SMOKE LIMITATION		
	Interfaces I (CAN-Bus)		
1.B.1	ERROR ON CAN CONTROLLER A		
1.B.3	ERROR ON CAN CONTROLLER C		
1.B.4	TIMEOUT CAN MESSAGE BC2EDC1		
1.B.5	TIMEOUT CAN MESSAGE VM2EDC		
I.B.D	TIMEOUT CAN MESSAGE CCVS		
2.B.4	TIMEOUT CAN MESSAGE BC2EDC2		
Interfaces 2 (CAN line timeout messages)			
1.C.6	ERROR MESSAGE CAN TSCI-PE		

Failure code	Failure description
1.C.8	error message can tsci-ve
1.C.9	error message can tf
2.C.6	TIMEOUT OF CAN MESSAGE TSC I -PE PASSIVE
3.C.8	TIMEOUT OF CAN MESSAGE TSC I-VE PASSIVE
	ECU I (internal checks)
I.D.I	ECU OVERRUN MONITORING ERROR
1.D.2	ECU OVERRUN MONITORING ERROR
1.D.3	ECU OVERRUN MONITORING ERROR
1.D.4	ECU OVERRUN MONITORING ERROR
1.D.5	ECU OVERRUN MONITORING ERROR
1.D.6	ECU INTERNAL ERROR (TPU)
1.D.7	INTERNAL ECU ERROR (VARIANT AREA)
1.D.8	ECU OVERRUN MONITORING ERROR
1.D.9	ECU OVERRUN MONITORING ERROR
2.D.3	ECU OVERRUN MONITORING ERROR
3.D.3	ERRORE INTERNO CENTRALINA
	ECU 2 (Power supply / Immobilizer / Runaway / Sensor power supply)
1.E.1	ECU: SHORT CIRCUIT OR OPEN CIRCUIT
1.E.3	ERROR FOR ECU INTERNAL MONITORING
1.E.4	ERROR FOR ECU INTERNAL MONITORING
1.E.5	SENSORS POWER SUPPLY FAULT (12V)
1.E.6	SENSOR POWER SUPPLY I
1.E.7	SENSOR POWER SUPPLY 2
1.E.8	SENSOR POWER SUPPLY 3
1.E.9	ECU OVERRUN MONITORING ERROR
I.E.A	ECU OVERRUN MONITORING ERROR
I.E.B	ATMOSPHERIC PRESSURE SENSOR
2.E. I	SHORT CIRCUIT TO BATT OR GROUND, NO LOAD, EXCESS.TEMP. FOR LOW SIDE POWER STAGE

SECTION 3 - INDUSTRIAL APPLICATION

57

F2C CURSOR ENGINES

59

MAINTENANCE PLANNING Recovery

To ensure optimised working conditions, in the following pages we are providing instructions for the overhaul control interventions, checks and setting operations that must be performed on the engine at due planned dates.

The frequency of the maintenance operations is just an indication since the use of the engine is the main characteristic to determine and evaluate replacements and checks.

It is not only allowed but recommended that the staff in charge of the maintenance should also carry out the necessary maintenance and controlling operations even if not being included in the ones listed here below but that may be suggested by common sense and by the specific conditions in which the engine is run.

Planning of controls and periodical intervention

Type of operation		Every 300 hours	Every 600 hours	Every 1200 hours
Engine				
Engine oil topping up	•			
Change engine oil			•	
Change engine oil filters			•	
Change of blow-by filter			•	
Replacing fuel filter		•		
Adjustment of valve clearance				•
Change miscellaneous drive belts				•
Chassis and mechanical assemblies				
Change fuel pre-filter (if available)		•		

The maintenance operations are valid only if the setter fully complies with all the installation prescriptions provided by Iveco Motors.

NOTE	The engine lubrication intervals apply with the use of Diesel fuel with sulphur content of less than 0.	.5%.
	If using diesel with a percentage of sulphur above 0.5%, the oil-change frequency has to be halved.	
Use eng	ne oil: ACEA E3 - 96	

NOTE Diesel fuel for low temperatures. Standard EN590 defines different classes of Diesel fuels, identifying the characteristics of those most suitable for use in low ambient temperatures.

Compliance with the regulations regarding the distribution of fuels suitable for the climatic and geographic conditions of the various countries is entirely up to the oil companies.

The engine oil and filters must be changed every 12 months in case of very low annual use or less than 600 hours.

Premature clogging of the air cleaner is generally due to the operating conditions. The filter should therefore be renewed whenever clogging is signalled by the sensor regardless of the prescribed time interval, which should in any case be respected in the absence of any specific indications.

The time intervals given in this plan are merely approximate as they refer to using the engines in an industrial environment with average use in relation to displacement.

OFF-PLANE OPERATIONS

Every year - Before winter

and possibly when a maintenance operation is carried out

Check the antifreeze percentage in the engine cooling water

Every two year

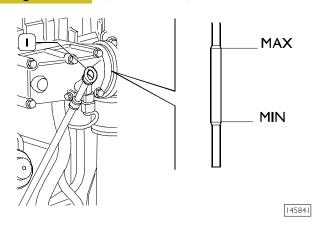
and possibly when a maintenance operation is carried out

Change engine coolant

NOTE Early air filter clogging is usually due to environmental conditions. For this reason, the filter should be changed if clogging is signalled by the related sensor, regardless of the prescriptions that shall be observed if no specific indications have been provided.

MAINTENANCE PROCEDURES

Checks and controls

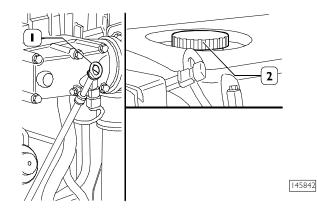

Engine oil level check

The check must be executed when the engine is disconnected and possibly cool.

The check can be made using the specially provided flexible rod (1).

Figure 104

(Demonstration)


Draw off the rod from its slot and check that the level is within the etched tags of minimum and maximum level.

Whether it should be difficult to make the evaluation, proceed cleaning the rod using a clean cloth with no rag grinding and put it back in its slot. Draw it off again and check the level.

In case the level results being close to the tag showing minimum level, provide filling lubrication of the engine's components.

Figure 105

(Demonstration)

Top up via the tappet cover cap (2). When filling, remove the dipstick (1) to facilitate the flow of oil.

The engine oil is highly polluting and harmful.

In case of contact with the skin, rinse well with water and detergent.

Adequately protect the skin and the eyes, operate in full compliance with safety regulations.

Disposal must be carried out properly, and in full compliance with the law and regulations in force.

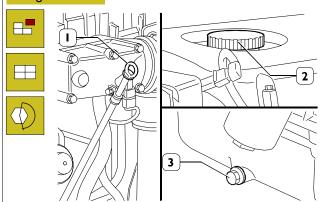
Lubricating system check

The check must be executed both when the engine disconnected and when it is running.

Verify the presence of any oil leakage or blow-by from the head, from the engine pan of from the heat exchanger.

The engine oil is highly polluting and harmful.

In case of contact with the skin, rinse well with water and detergent.



Adequately protect the skin and the eyes, operate in full compliance with safety regulations.

Disposal must be carried out properly, and in full compliance with the law and regulations in force.

Engine oil change

Figure 106

We recommend to carry out the oil drainage when the motor is hot.

Warning: We recommend to wear proper protections because of high motor service temperature.

The motor oil reaches very high temperature: you must always wear protection gloves.

- Place a proper container for the oil collecting under the pan connected with the drain plug (3).
- Unscrew the plug (3) and then take out the control dipsick (1) and the inserting plug (2) to ease the downflow of the lubrication oil.

The oil motor is very pollutant and harmful.

In case of contact with the skin, wash with much water and detergent.

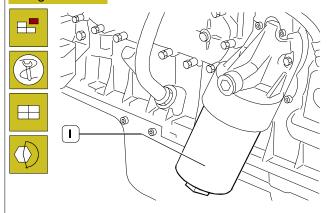
Protect properly skin and eyes: operate according to safety rules.

Dispose of the residual properly following the rules.

- After draining completely, screw on the plug (3) under the sump and tighten it to the prescribed torque.
- Add the specified quantity of recommended engine oil through the filler (2) of the tappets cover.

NOTE

Use only the recommended oil or oil having the requested features for the correct motor functioning.


In case of topping up, don't mix oils having different features.

If you don't comply with theses rules, the service warranty is no more valid.

Check the level through the dipsick until when the filling is next to the maximum level notch indicated on the dipsick.

Engine oil filter change

Figure 107

119976

Drain the oil as described in the section "Changing the engine oil".

NOTE

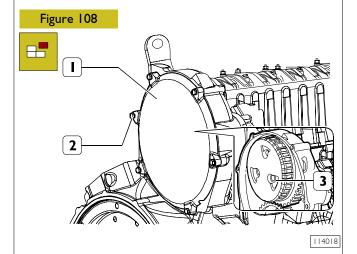
Warning: the oil filter contains inside a quantity of oil of about 1 kg.

Place properly a container for the liquid.

Warning avoid the contact of skin with the motor oil: in case of contact wash the skin with running water.

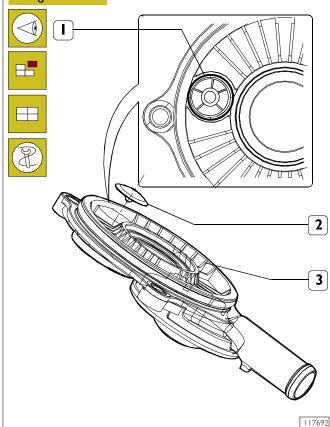
The motor oil is very pollutant: it must be disposed of according to the rules.

NOTE Before refitting the new cartridge, wet seal using engine oil.


Screw the oil filter (1) by hand until it touches the support, then tighten $\frac{3}{4}$ of a turn to the required torque.

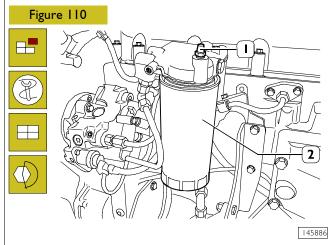
Refit the plug under the sump, tightening it to the required torque.

Add the required amount of recommended engine oil through the filler.


Complete the operation as described in the section "Changing the engine oil".

Changing the Blow-by filter

Unlock screws (2) and remove cover (1). Remove the centrifugal filter (3) underneath and replace it.


Figure 109

Install blow-by body (1) with related seal and lock screws (2) at required torque.

Install cover (3) and lock screws (4) at required torque.

Fuel filter change

During this operation don't smoke and don't use free flames.

Avoid to breathe the vapors coming from filter.

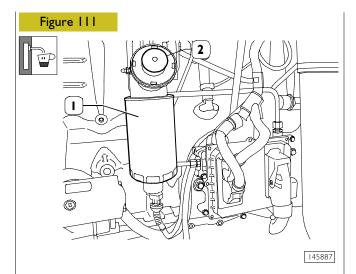
After filters replacement the supply equipment deaeration must be carried out.

Unscrew the fuel filter cartridge (2).

Before fitting the new cartridge, wet seal with fuel oil or engine oil.

Lock the new one by hand and carefully check that rubber seal and contact surface are clean and in perfect conditions.

Lock cartridge by hand till contact with support and then lock it for $\frac{3}{4}$ of a rev. at prescribed tightening torque.


When replacing the filter cartridge (2) do **NOT** fill it

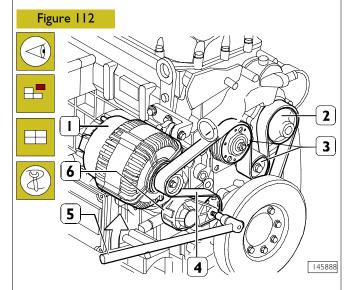
This operation is banned to avoid impurities entering into the circuit, which would damage the injector/pump system components.

Bleed air from the fuel as described below.

Fuel bleeding

Loosen the bleed screw (I) connecting the drainage by a transparent flexible hose to a suitable container.

With the hand pump (2) of the fuel pre-filter (1) pump until fuel completely free of air bubbles flows from the bleed screw.


After the operation, tighten the bleed screw.

Start the engine and allow it to run at minimum for a few minutes to expel any remaining air.

Valve lash check a adjustment

For correct operation, follow instructions contained in related chapter in section 3 – Industrial Application.

Check of water pump/alternator control belt condition

Visually check that belt (4) is not worn out or broken; change it as described below, if required.

NOTE To be able to work on the engine belt you first need to remove the protective casing (if applicable) by unscrewing the screws.

Use appropriate equipment (5) on the belt tensioner (6) in the direction shown by the arrow and extract the belt (4) from the pulleys of the alternator (1), of the coolant pump (2) and from the idler pulleys (3).

- Replace the worn belt with a new one.
- ☐ Place the belt on the pulleys and the guide rollers.
- Place the automatic tightener in order to key the belt in the functioning position.
- Further adjustments are not required.

Replacing coolant

Only proceed with the engine stopped and at a low temperature, so as to avoid the risk of burning.

- Provide suitable containers to ensure that no coolant is dispersed into the environment.
- ☐ Loosen the seal elements, remove the sleeves connecting the engine circuit to the heat exchanger and wait until it has emptied completely. When empty, repair the circuit making sure that the sleeves are perfectly sealed.
- Fill up the circuit.
- Refill the engine and the heat exchanger until complete top up.
- ☐ With the filler cap open, start the engine and keep it idling for nearly one minute. This phase facilitates the cooling liquid air bleed.
- ☐ Stop the engine and top up again.

Τ

SECTION 4

Overhaul	and	technical	specificat	tions
O V CI II aui	anu	cecilincai	specificat	

		Page
GEN	NERAL CHARACTERISTICS	3
ASS	SEMBLY CLEARANCE DATA	5
ENG	GINE OVERHAUL	11
ENG	GINE REMOVAL AT THE BENCH	11
REP	PAIR OPERATIONS	12
CYL	INDER BLOCK	12
	Checks and measurements	12
CYL	LINDER LINERS	13
	Replacing cylinder liners	15
CR/	ANKSHAFT	16
	Measuring main journals and crank pins	17
PRE E	ELIMINARY MEASUREMENT OF MAIN AND BIG END BEARING SHELL SELECTION DATA .	i 18
	Selecting the main and big end bearing shells .	19
	Replacing the timing control gear and the oil pump	25
	Checking main journal installation clearance	25
	Checking crankshaft end float	26
PIST	TON-CONNECTING ROD ASSEMBLY	27
	Removal	27
	Conditions for correct gudgeon pin-piston coupling	28
	Piston rings	29

	1	Page
СО	NNECTING ROD	30
	Mounting the connecting rod - piston assembly	32
	Mounting the piston rings	32
	Fitting the connecting rod-piston assembly into the piston liners	33
	Piston protrusion check	33
	Checking assembly clearance of big end pins	34
CYI	LINDER HEAD	34
	Dismounting the valves	34
	Checking the planarity of the head on the cylinder block	34
VAI	LVE	35
	Removing deposits and checking the valves	35
VAI	LVE GUIDES	35
	Replacing of valve guides	36
	Replacing - Reaming the valve seats	36
REF	PLACING INJECTOR HOLDER CASES	36

		Page
TIM	IING GEAR	39
	Camshaft drive	39
	Intermediate gear pin	39
	Idler gear	39
	Twin idler gear	39
	Replacing the bushings	39
	Camshaft	40
	Checking cam lift and pin alignment	40
	Bushes	41
	Use beater 99360505 to change bushings	42
VAI	LVE SPRINGS	42
	Fitting the valves and oil seal ring	42
RO	CKER SHAFT	43
	Shaft	43
	Rocker	43
TIG	HTENING TORQUES	44

3

GENERAL CHARACTERIST	TICS
----------------------	------

	Туре		F2CE9687	
1	Cycle		4-stroke Diesel engine	
	Fuel feed		Turbocharged	
	Injection		Direct	
	No. of cylinders		6 in line	
	Bore	mm	117	
	Stroke	mm	135	
	Total displacement	cm ³	8710	

4

	Туре		F2CE9687
A	VALVE TIMING		
	opens before T.D.C.	Α	I7°
B C	closes after B.D.C.	В	31°
	opens before B.D.C.	D	48°
D	closes after T.D.C.	С	9°
	For timing check		
	× {	mm mm	-
X	Running	111111	-
	×	mm	0.35 to 0.45
	^ \	mm	0.55 to 0.65
	FEED		Bosch Common Rail with CRIN2 injectors and high pressure pump CP3.3
	Nozzle type		DLLA 137
	Injection order		1 - 4 - 2 - 6 - 3 - 5
bar	Injection pressure Injector calibration	bar bar	1800

	Туре	F2CE9687	
YLINDER BLOC	K AND SM COMPONENTS	mm	
ØI	Bores for cylinder liners: upper Ø I lower	130.500 to 130.525 129.510 to 129.535	
L Ø2	Cylinder liners: external diameter: upper Ø2 lower length L	130.461 to 130.486 129.475 to 129.500 226,15 226.15	
	Cylinder liners - crankcase bores upper lower	0.014 to 0.064 0.010 to 0.060	
<u> </u> >	External diameter Ø2	-	
Ø3 X Selection class	Cylinder sleeve inside diameter Ø3A* inside diameter Ø3B* Protrusion X	117.000 to 117.012 117.010 to 117.022 0.035 to 0.065	
X ØI	Pistons: measuring dimension X external diameter ØIA external diameter ØIB pin bore Ø2	15 116.894 to 116.906 116.904 to 116.916 52.010 to 52.016	
Selection class	Piston - cylinder sleeve A* B*	0.094 to 0.118 0.094 to 0.118	
<u> </u>	Piston diameter Ø1	-	
X	Pistons protrusion X	0.873 to 1.117	
□ Ø3	Gudgeon pin Ø3	51.994 to 52.000	
	Gudgeon pin - pin housing	0.010 to 0.022	

	Туре	F2CE9687
	Туре	mm
		3,120 ÷ 3,140
	XI	3.120 to 3.140
× × × × × × × × × × × × × × × × × × ×	Piston ring grooves X2	2.550 to 2.570
	X3	4.020 to 4.040
	Piston rings: trapezoidal seal ST	3.000
" (°S I	lune seal S2	2.470 to 2.500
		2.170 to 2.300
[↑] (S 3	milled scraper ring with slits and internal	
	spring S3	3.970 to 3.990
	Piston rings - grooves 2	- 0.050 to 0.100
- -	Piston rings - grooves 2 3	0.030 to 0.100 0.030 to 0.070
<u> </u>	Piston rings	-
⊢ ✓ XI	Piston ring end gap	
<u>→ </u>	in cylinder liners	
X3	XI	0.3 to 0.4
	X2 X3	0.60 to 0.75 0.35 to 0.65
	^3	0.33 to 0.63
- ¥	Small end bush housing	
ØI	ØI	55.700 to 55.730
	Big end bearing	25.027 24.012
Ø 2	housing Ø2	85.987 to 86.013
	Selection classes { 2	85.987 to 85.996 85.997 to 86.005
	Jelection classes 2 3	86.006 to 86.013
Ø 4	Small end bush diameter	
	outside Ø4	55.780 to 55.820
Ø3	inside 🚣 Ø3	52.015 to 52.030
	Big end bearing shell S	10044-2002
S	Red Green	1.994 to 2.002 2.002 to 2.010
	Yellow ●	2.010 to 2.018
4	Small end bush - housing	0.05 to 0.08
	Piston pin - bush	0.015 to 0.036
	Big end bearing	0.127 - 0.254 - 0.508
	Connecting rod weight A	g
/ \	A	3450 to 3470
	Class B	3471 to 3490
	С	3491 to 3510

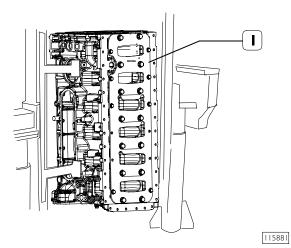
• Fitted in production only and not supplied as spares

\\\		F2CE9687
	Туре	mm
X	Measuring dimension X	125
	Max. connecting rod axis misalignment tolerance	0.08
Ø1 Ø2 ▼	Main journals - nominal - class - class - class Crankpins - nominal - class	92.970 to 93.000 92.970 to 92.980 92.980 to 92.990 92.990 to 93.000 81.915 to 81.945 81.915 to 81.925 81.925 to 81.935 81.935 to 81.945
	Green Yellow* Big end bearing shells S2 Red Green Yellow* Main bearing housings Ø3	1.994 to 2.002 2.002 to 2.010 2.010 to 2.018
Ø3	- nominal - class I - class 2 - class 3 Bearing shells -	99.020 to 99.030
	main journals Bearing shells - big ends	0.050 to 0.090 0.040 to 0.080
	Main bearing shells Big end bearing shells	0.127 - 2.254 - 0.508 0.127 - 2.254 - 0.508
XI	Main journal, thrust bearing XI	39.96 to 40.04
X2,	Main bearing housing, thrust bearing X2	38.94 to 38.99
×3	Thrust washer halves X3	3.38 to 3.43
	Crankshaft end float	0.10 to 0.30
2	Alignment	0.04

Fitted in production only and not supplied as spares

l————		
	Туре	F2CE9687
CYLINDER HEAD	- VALVE TRAIN	mm
ØI	Valve guide housings in cylinder head ∅I	12.9800 to 12.997
Ø 2 Ø 3	Valve guide	8.023 to 8.038 13.012 to 13.025
<i>\$</i>	Valve guides - housings in the cylinder heads	0.015 to 0.045
 	Valve guide	0.2 - 0.4
Ø 4	Valves:	
-> -		7.970 to 7.985 60° 30′ ± 7′ 30″
α	$\bigcap_{\alpha} \bigcirc \bigcirc$	7.970 to 7.985 45° ⁺¹⁵
	Valve stem and its guide	0.040 to 0.070
ØI	Valve seat in head	41.985 to 42.020 40.985 to 41.020
Ø 2	Outside diameter of valve seat; angle of valve seat in cylinder head:	0' -0,5'
α		42.060 to 42.075 60° - 30' 0' -0,5' 41.060 to 41.075
	α	45° - 30'
×	X □ Recessing of valve X	0.5 to 0.8
	·	1.6 to 1.9
\$	Between valve seat and head	0.040 to 0.090

	Type	F2CE9687		
	Туре	mm		
	Valve spring height:	A	В	
H H H	free height H under a load of: N 460 ± 23 HIA N 460 ± 22 HIB	70.77	71.34	
	N 740 ± 33 H2A N 731,4 ± 42 H2B	39		
×	Injector protrusion X	1.2 to	1.5	
	Camshaft bushing housing in the cylinder head: I ⇒ 7 Ø	69.000 to 69.030		
Ø 2 Ø 1 Ø 3	Camshaft bearing journals: I ⇒ 7 Ø	64.924 to 64.080		
Ø	Outer diameter of camshaft bushings:	69.090 to 69.130		
Ø	Inner diameter of camshaft bushings:	65.080 to	65.080 to 65.116	
	Bushings and housings in the cylinder head	0.060 to 0.130		
	Bushings and bearing journals	0.100 to 0.192		
Н Н	Cam lift: 7.4034 8.2108			
Ø I	Rocker shaft Ø1	31.964 to 31.980		


	Туре	F2CE9687	
		mm	
Ø Ø	Bushing housing in rocker arms		
		32.025 to 32.041	
		32.025 to 32.041	
	Between bushings and housings		
\$		0.045 to 0.077	
		0.045 to 0.077	
TURBOCHARGER			
Туре		HX40	
End float		0.025 to 0.127	
Radial play		0.330 to 0.508	

ENGINE OVERHAUL ENGINE REMOVAL AT THE BENCH

The following instructions are prescribed on the understanding that the engine has previously been placed on the rotating bench and that removal of all specific components of the equipment have been already removed as well. (See Section 3 of the manual herein).

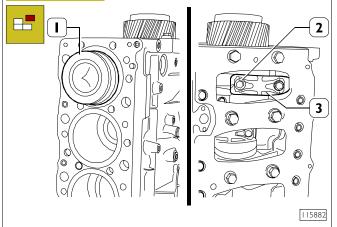
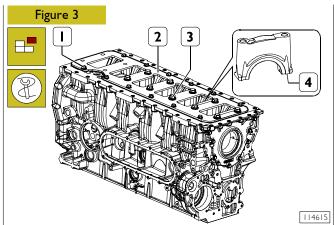

The section illustrates therefore all the most important engine overhaul procedures.

Figure I

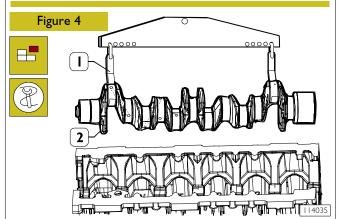
Rotate the block (I) to the vertical position.

Figure 2

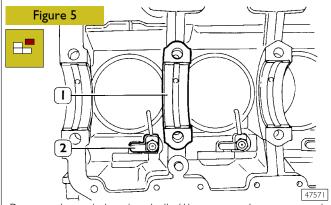


Untighten screws (2) fixing the connecting rod cap (3) and remove it. Remove the connecting rod-piston (1) assembly from the upper side.

Repeat these operations for the other pistons.



Keep the big end bearing shells in their respective housings and/or note down their assembly position since, if reusing them, they will need to be fitted in the position found upon removal.



Use adequate hexagonal spanner, unlock screws (1 and 3) and remove stiffening plate (2) as well as main journals (4).

NOTE Note down the assembly position of the top and bottom main bearing shells since, if reusing them, they will need to be fitted in the position found upon removal.

Using tool 99360500 (1), remove the crankshaft (2).

Remove the main bearing shells (1), unscrew the screws and take out the oil nozzles (2).

Remove the cylinder liners as described under the relevant subheading on page 15.

After disassembling the engine, thoroughly clean disassembled parts and check their integrity.

Instructions for main checks and measures are given in the following pages, in order to determine whether the parts can be re-used.

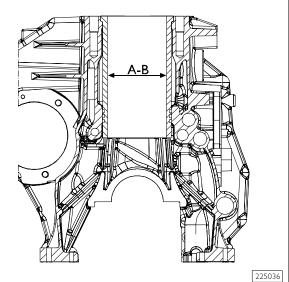
REPAIR OPERATIONS CYLINDER BLOCK Checks and measurements

Figure 6 (Demonstration)

Internal diameter of the cylinder liners is checked for ovalization, taper and wear, using a bore dial (1) centesimal gauge 99395687 (2) previously reset to ring gauge (3), diameter 117 mm.

NOTE If dia.117 mm ring gage is not available, use a micrometer.

Figure 7


 $I = I^{st}$ measuring

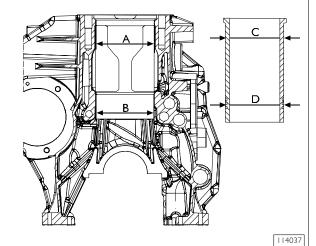
 $2 = 2^{nd}$ measuring

 $3 = 3^{rd}$ measuring

Carry out measurings on each cylinder liner at three different levels and on two (A-B) surfaces, to one another perpendicular, as shown in Figure.

Figure 8

A = Selection class \varnothing 117 – 117.012 mm


B = Selection class \varnothing 117.010 - 117.022 mm

X =Selection class marking area

In case of maximum wear >0.150 mm or maximum ovalization >0.100 mm compared to the values indicated in the figure, the liners must be replaced as they cannot be ground, lapped or trued.

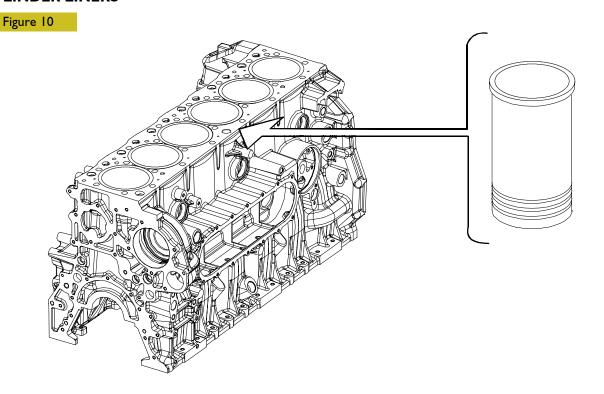
NOTE Cylinder liners are equipped with spare parts with "A" selection class.

Figure 9

 $A = \emptyset 130.500 \text{ to } 130.525 \text{ mm}$

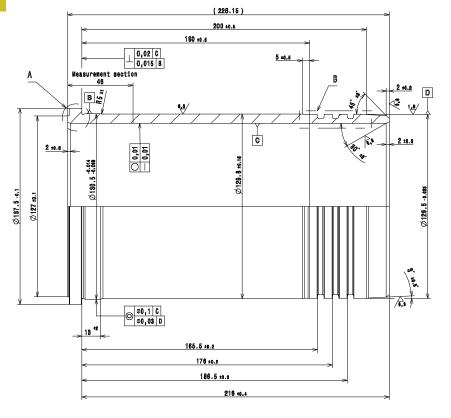
 $B = \emptyset$ 129.510 to 129.535 mm

 $C = \emptyset$ | 30.46| to | 30.486


 $D = \emptyset$ 129.475 to 129.500 mm

The figure shows the outer diameters of the cylinder liners and the relative seat inner diameters.

The cylinder liners can be extracted and installed several times in different seats, if necessary.

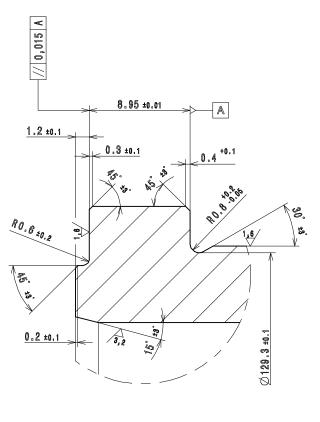

Base - May 2010 Print P2D32C006 E

CYLINDER LINERS

CYLINDER BLOCK ASSEMBLY WITH CHROME-PLATED CYLINDER LINERS

Figure 11

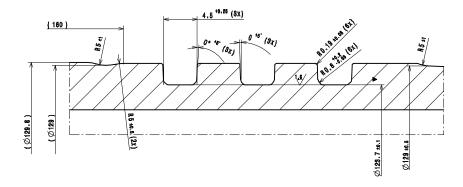
CYLINDER LINERS MAIN DATA


Selection class

A mm 117.000 to 117.012 B mm 117.010 to 117.022

Print P2D32C006 E Base - May 2010

145836


Figure 12

DETAIL A

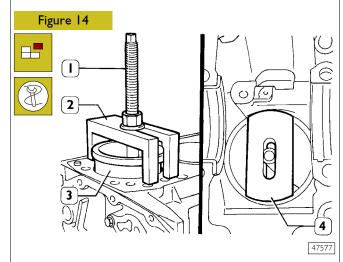
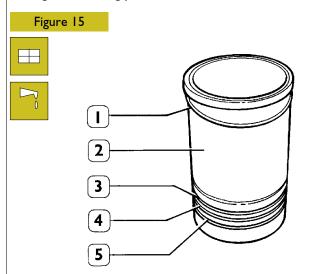

145837

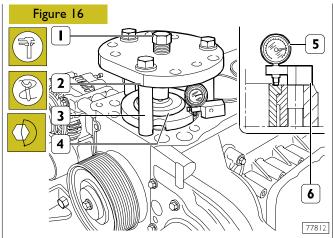
Figure 13

DETAIL B

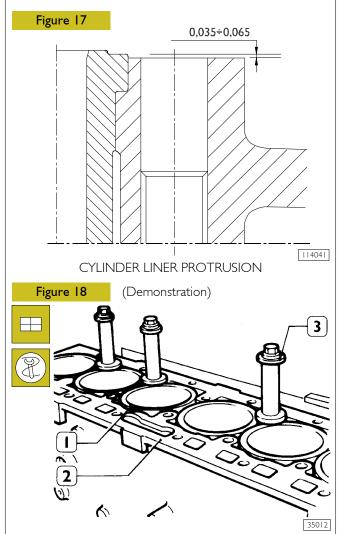

Replacing cylinder liners Removal

Place details 99360706 (I and 2) and plate 99360724 (4) as shown in the figure, by making sure that the plate (4) is properly placed on the cylinder liners.

Tighten the screw nut (I) and remove the cylinder liner (3) from the block.


Fitting and checking protrusion

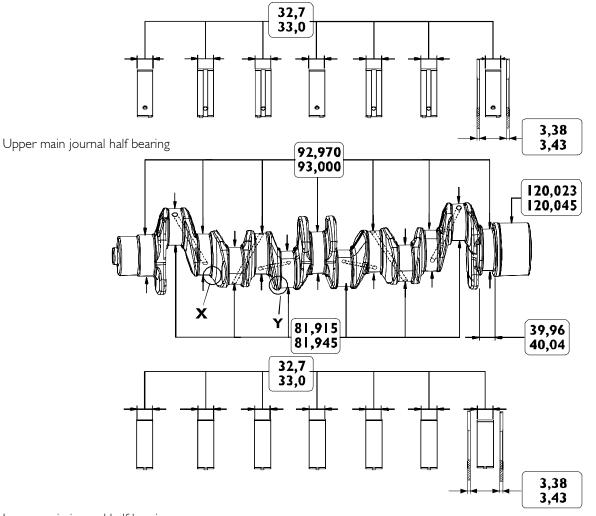
Always replace water sealing rings (3, 4 and 5).


Install the adjustment ring (I) on the cylinder liner (2); lubricate lower part of liner and install it in the cylinder unit using the proper tool.

NOTE The adjustment ring (1) is supplied as spare parts in the following thicknesses: 0.08 mm - 0.10 mm - 0.12 mm.

Check cylinder barrel protrusion with tool 99360334 (1-2-3-4) and tighten screw (1) to 170 Nm.

With dial gauge 99395603 (5) placed on base 99370415 (6) measure the cylinder barrel protrusion compared to the cylinder head supporting plane, it must be 0,035 to 0,065 mm (Figure 17); otherwise replace the adjusting ring (1, Figure 15) fitted with spare parts having different thickness.



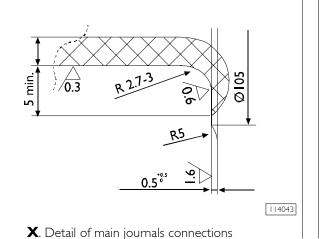
When the installation is completed, block the cylinder liners (1) to the block (2) with study 99360703 (3).

Print P2D32C006 E Base - May 2010

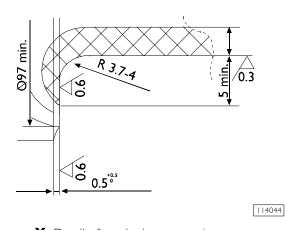
CRANKSHAFT

Figure 19

Lower main journal half bearings

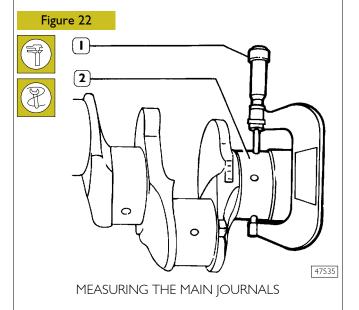

144835

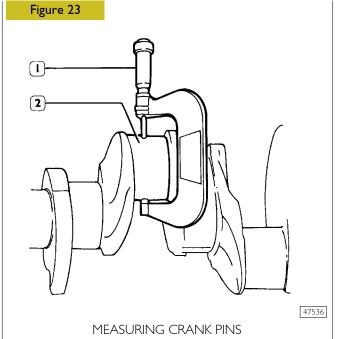
MAIN DATA FOR THE CRANK SHAFT PINS AND THE HALF BEARINGS


Check the condition of the journals and the big end pins; there must no be signs of scoring, ovalization or excessive wear.

The data given refer to the normal diameter of the pins.

Figure 20

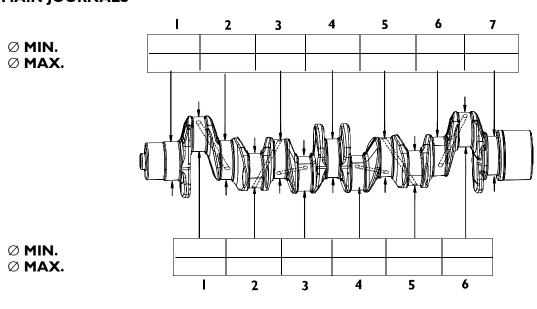

Figure 21


Y. Detail of crank pins connections

Measuring main journals and crank pins

Before grinding the crank pins using a micrometer (1), measure the main journals and the crank pins (2) and decide, on the basis of the undersizing of the bearings, the final diameter to which the pins are to be ground.

NOTE It is advisable to enter the values found in a table (Figure 24).


During grinding, pay attention to journal and crank pins values specified in figures 19 and 20.

NOTE All journals and crank pins must also be ground to the same undersizing class, in order to avoid any alteration to shaft balance.

Figure 24

Fill in this table with the measurements of the main journals and the crank pins.

MAIN JOURNALS

CRANK PINS

114045

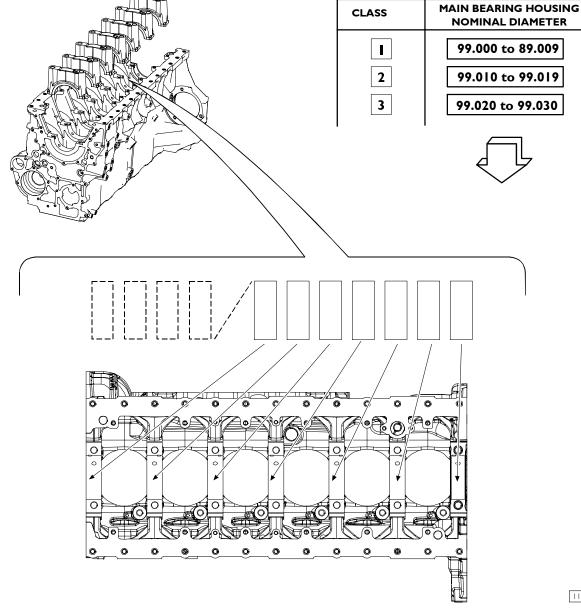
PRELIMINARY MEASUREMENT OF MAIN AND BIG END BEARING SHELL SELECTION DATA

For each of the journals of the crankshaft, it is necessary to carry out the following operations:

MAIN JOURNALS:

- Determine the class of diameter of the seat in the crankcase.
- Determine the class of diameter of the main journal.
- ☐ Select the class of the bearing shells to mount.

CRANKPINS:


- Determine the class of diameter of the seat in the connecting rod.
- Determine the class of diameter of the crankpin.
- ☐ Select the class of the bearing shells to mount.

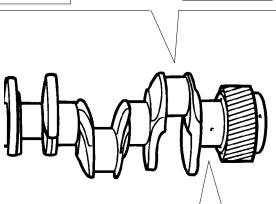
DEFINING THE CLASS OF DIAMETER OF THE SEATS FOR BEARING SHELLS ON THE CRANKCASE

On the front of the crankcase, two sets of numbers are marked in the position shown (Figure 25 at top).

- The first set of digits (four) is the coupling number of the crankcase with its base (Figure 25 at bottom).
- The following seven digits, taken singly, are the class of diameter of each of the seats referred to (Figure 25 at bottom).
- ☐ Each of these digits may be I, 2 or 3.

mm.

Selecting the main and big end bearing shells


NOTE To obtain the required assembly clearances, the main and big end bearing shells need to be selected as described hereunder.

This operation makes it possible to identify the most suitable bearing shells for each of the journals (the bearing shells, if necessary, can have different classes from one journal to another).

Depending on the thickness, the bearing shells are selected in classes of tolerance marked by a coloured sign (red-green – red/black – green/black).

The following tables give the specifications of the main and big end bearing shells available as spares in the standard sizes (STD) and in the permissible oversizes (+0.127, +0.254, +0.508).

red 2.968 to 2.978

red/black 3.031 to 3.041

green 2.978 to 2.988

green/black 3.041 to 3.051

yellow* 2.988 to 2.998

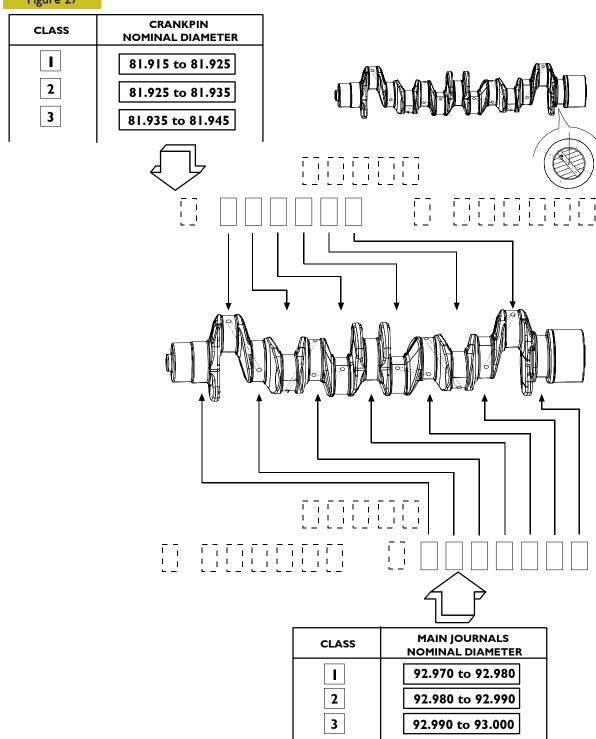
mm.

* Fitted in production only and not supplied as spares

yellow/black*

Print P2D32C006 E Base - May 2010

3.051 to 3061

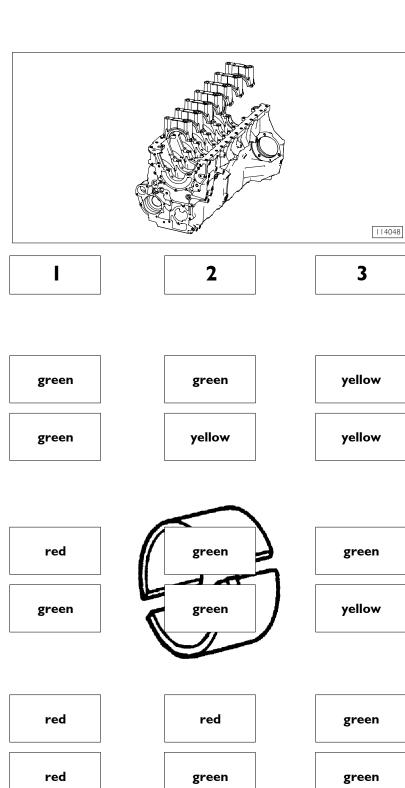

DEFINING THE CLASS OF DIAMETER OF THE MAIN JOURNALS AND CRANKPINS (Journals with nominal diameter)

Main journals and crankpins: determining the class of diameter of the journals.

Three sets of numbers are marked on the crankshaft in the position shown by the arrow (Figure 27 at top):

- The first number, of five digits, is the part number of the shaft.
- Under this number, on the left, a set of six digits refers to the crankpins and is preceded by a single digit showing the status of the journals (I = STD, 2 = -0.127), the other six digits, taken singly, give the class of diameter of each of the crankpins they refer to (Figure 27 at top).
- The set of seven digits, on the right, refers to the main journals and is preceded by a single digit: the single digit shows the status of the journals (I = STD, 2 = -0.127), the other seven digits, taken singly, give the class of diameter of each of the main journals they refer to (Figure 27 at bottom).

Figure 27



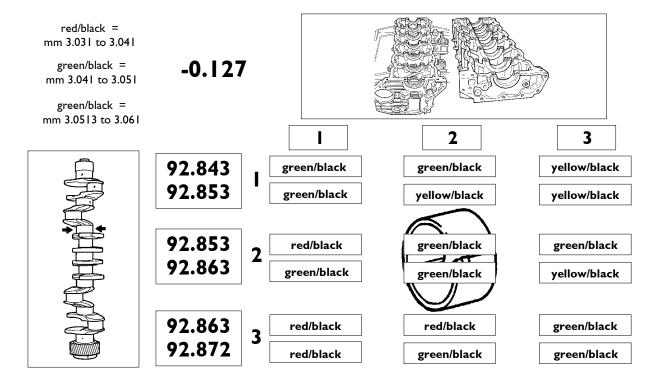
Selection of main half-bearings (nominal diameter pins)

After detecting, for each journal, the necessary data on block and crankshaft, select the type of half-bearings to be used, in compliance with the following table:

Figure 28

STD.

114055


3

Selection of main half-bearings (rectified pins)

If the journals have been rectified, the procedure described cannot be applied.

In this case, make sure that the new diameter of the journals is as specified on the table and install the only half-bearing type required for this undersizing.

Figure 29

SELECTING THE BIG END BEARING SHELLS (JOURNALS WITH NOMINAL DIAMETER)

There are 4 references on the connecting rod casing in the positions illustrated:

- I. Coloured mark for identifying the weight
- 2. Coloured mark for identifying the diameter grade
- 3. Positioning stud visible from the front of the engine
- 4. Progressive number for identifying the connecting rod

NOTE The identification colours of the marks are given in the table on page 31.

The number, indicating the class of diameter of the bearing shell seat may be ${\bf I}$, ${\bf 2}$ o ${\bf 3}$.

Determine the type of big end bearing to fit on each journal by following the indications in the table (Figure 31).

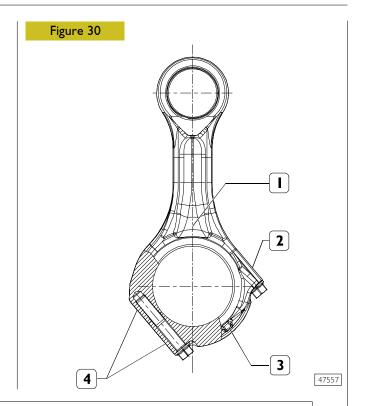
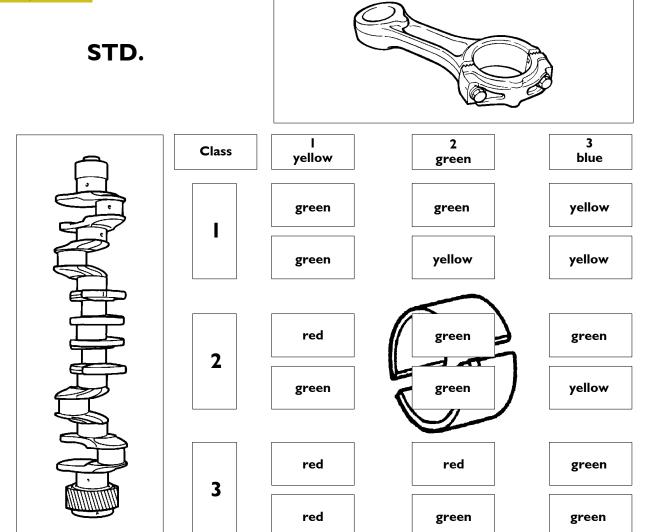
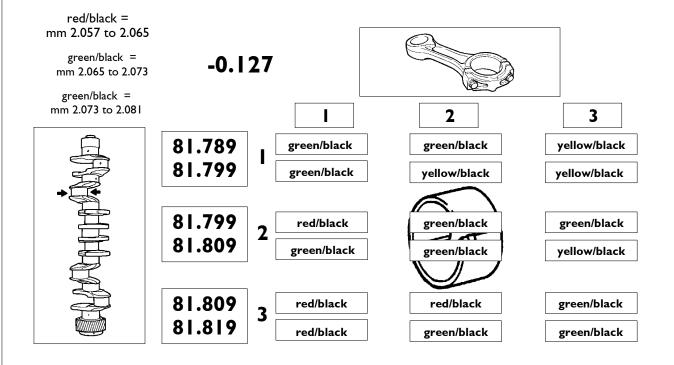



Figure 31



Selection of connecting rod half-bearings (rectified pins)

If pins have been rectified, the procedure described must be applied.

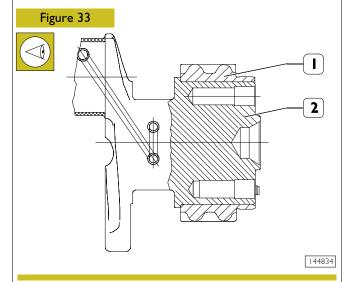
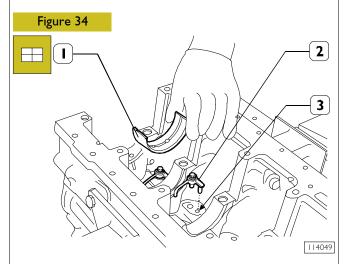

In this case, (for each undersizing) determine the tolerance field the new big end pins belong to, and install the half-bearings identified according to the relative table.

Figure 32

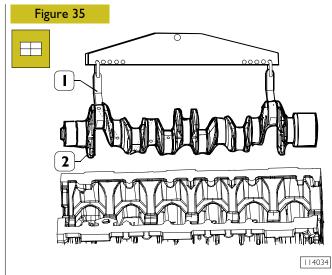
Replacing the timing control gear and the oil pump

Check that the teeth of the gears are not damaged or worn, otherwise remove them using the appropriate extractor.

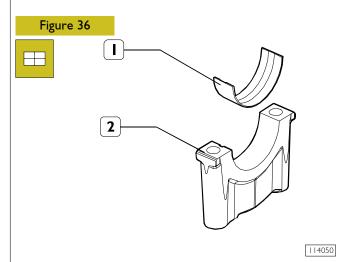


NOTE Before fitting the gear, spread Loctite type 603 on approx. 5 mm wide band on crankshaft, at 30 mm from contact surface.

After fitting the gear (1) on the crankshaft (2), heat it for \sim 15 minutes in an oven at temperature not higher than 180°C.

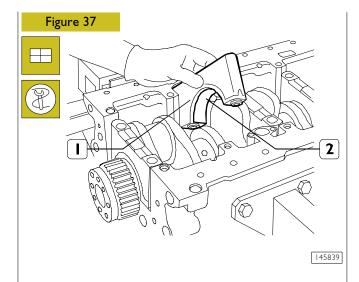

Let them cool down after the installation.

Checking main journal installation clearance

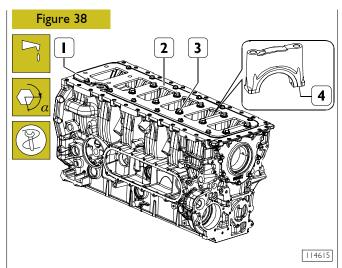


Fit the oil jets (2) aligning the dowel with the opening (3) in the crankcase.

Position the half-bearings (I) and the thrust washers on the main journal supports as illustrated in Figure 19.



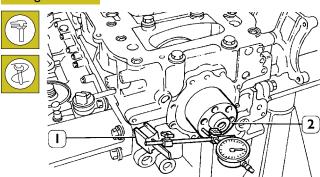
Using the hoist and hook 99360500 (I) mount the driving shaft (2).



Place bearing halves (1) on main journals (2).

Check the installation clearance between the main journals and the relative bearings as follows.

- ☐ Clean accurately the parts and remove any trace of oil;
- Fit caps (1), including the half bearings (2) on the relevant supports.

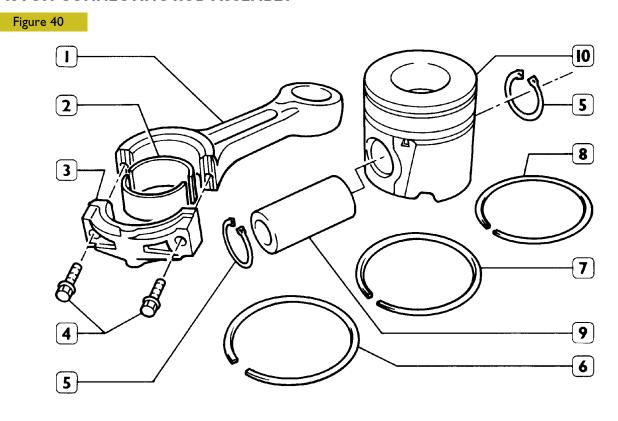


- Position the main journal caps (4) and fit the strengthening plate (2) following the procedure described:
- ☐ Tighten the inner bolts and then the outer bolts by hand starting from main journal "7" and continuing until main journal "1".
- Tightening the bolts using torque wrench always starting from main journal "7" and continuing until main journal "1".

1st stage: 140 Nm 2nd stage 60°+60°

Checking crankshaft end float

Figure 39

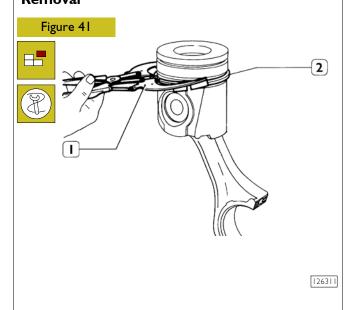

47588

End float is checked by placing a magnetic dial gauge (I) on the crankshaft (2), as shown in the figure.

If the value obtained is higher than specified, replace the rear thrust half-bearings and repeat this check.

47580

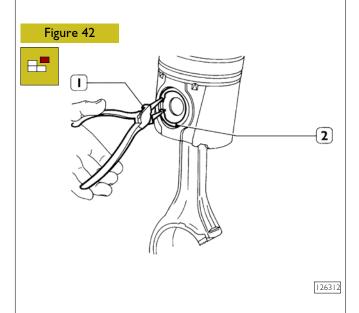
PISTON-CONNECTING ROD ASSEMBLY

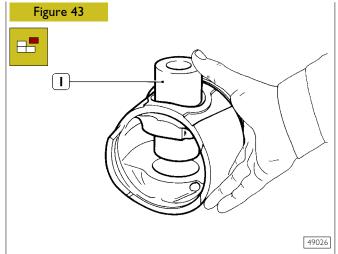


PISTON CONNECTING ROD ASSEMBLY

1. Connecting rod body - 2. Half bearings - 3. Connecting rod cap - 4. Cap fastening screws - 5. Split ring - 6. Scraper ring with spiral spring - 7. Bevel cut sealing ring - 8. Trapezoidal sealing ring - 9. Piston pin - 10. Piston

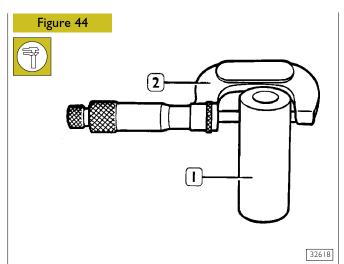
Make sure the piston does show any trace of seizing, scoring, cracking; replace as necessary.


Removal

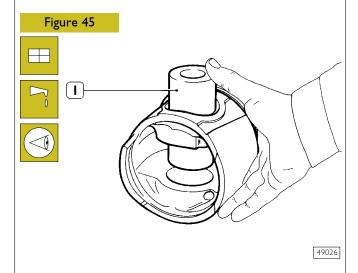

Removal of the piston split rings (2) using the pliers 99360184 (1).

Pistons are equipped with three elastic rings: a sealing ring, a trapezoidal ring and a scraper ring.

Pistons are grouped into classes A and B for diameter.



Remove the piston pin split rings (2) using the round tipped pliers (1).


Remove the piston pin (1).

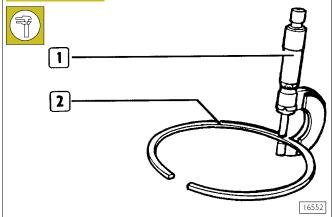
If removal is difficult use the appropriate beater.


Measuring the gudgeon pin diameter (1) with a micrometer (2).

Conditions for correct gudgeon pin-piston coupling

Lubricate the pin (1) and the relevant housing on the piston hubs with engine oil; piston must be inserted with a slight finger pressure and it should not come out by gravity.

3513



$X = 0.6 \pm 0.15$

• The dimension is measured on a Ø of 113 mm

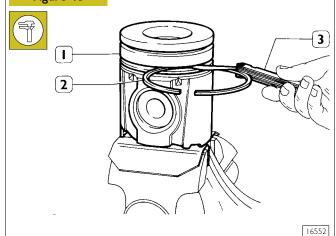

Piston rings

Figure 47

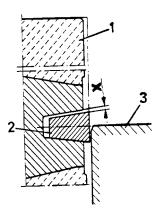

Check the thickness of the piston ring (2) using a micrometer (1).

Figure 48

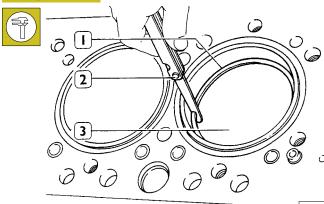
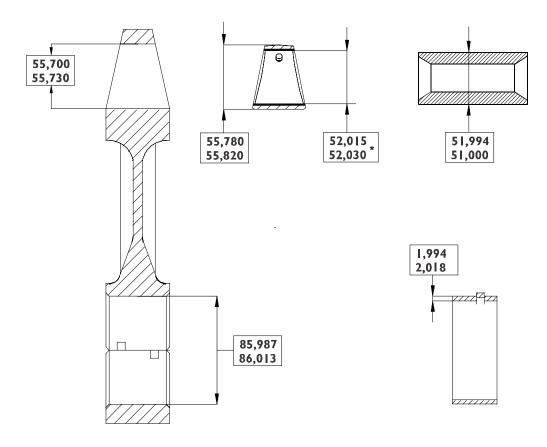

Check the clearance between the sealing rings (2) and the relative piston housings (1) using a thikness gauge (3).

Figure 49

The sealing ring (2) of the 1° cavity is trapezoidal. Clearance "X" between the sealing ring and its housing is measured by placing the piston (1) with its ring in the cylinder barrel (3), so that the sealing ring is half-projected out of the cylinder barrel.

Figure 50

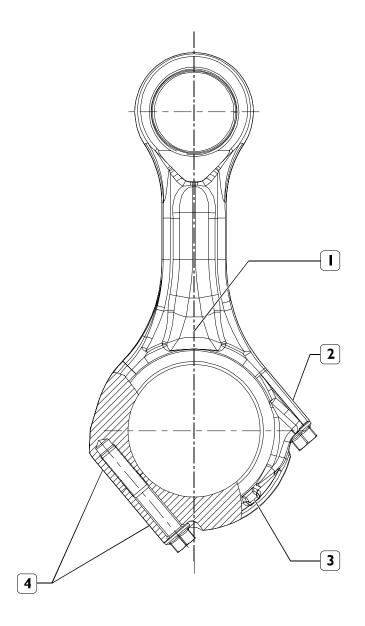
Check the opening between the ends of the sealing rings (1), using a thickness gauge (2), entered in the cylinder barrel (3).


If the distance between ends is lower or higher than the value required, replace split rings.

CONNECTING ROD

When fitting the connecting rods, check that all of them are of same weight class and from the same supplier. The connecting rod/cap is of "torn" type; before assembly verify that the connecting rod is not damaged. Each connecting rod can assembled with the relative cap only. If the cap is assembled on the reverse side, the connecting rod must be rejected.

Figure 51


114054

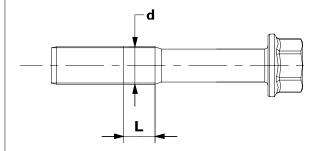
MAIN DATA - BUSH, CONNECTING ROD, PIN AND HALF-BEARINGS * Values to be obtained after installing the bush

- I Between the connecting rod bush and the connecting rod profile there must be a distance > 0.4 mm.
- 2 On the external breaking line, gap area allowed must be < 5 mm².
- 3 No cracks are allowed in the threaded area.

115884

Figure 52

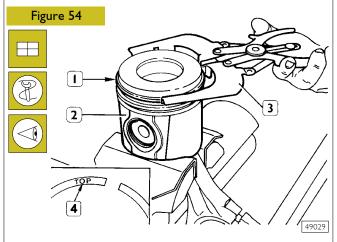
I. Coloured mark for identifying weight - 2. Coloured mark for identifying diameter grade - 3. Positioning stud visible from the front of the engine - 4. Progressive number for identifying connecting rod


WEIGHT		DIAMETER	
GRADE A Yellow	3450 g - 3470 g	Ø 85.987-85.996	Yellow
		Ø 85.997-86.005	Green
		Ø 86.006-86.013	Blue
CD A D E D	3471 g - 3490 g	Ø 85.987-85.996	Yellow
GRADE B Green		Ø 85.997-86.005	Green
Green		Ø 86.006-86.013	Blue
CDADE C	3491 g - 3510 g	Ø 85.987-85.996	Yellow
GRADE C Blue		Ø 85.997-86.005	Green
Bide		Ø 86.006-86.013	Blue

Mounting the connecting rod - piston assembly

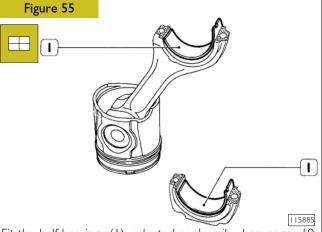
Carry out the steps for removal described on pages 27 and 28 in reverse order.

Figure 53



117694

NOTE The connecting rod screws can be reused as long as the diameter of the thread is not less than 11.4 mm.

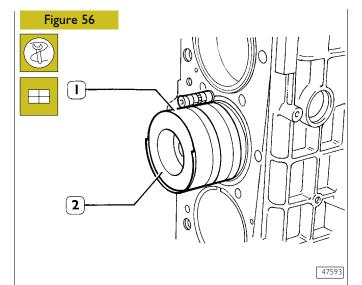

Mounting the piston rings

To fit the piston rings (I) on the piston (2) use the pliers 99360184 (3).

The rings need to be mounted with the word "TOP" (4) facing upwards. Direct the ring openings so they are staggered 120° apart.

Fitting the connecting rod-piston assembly into the piston liners

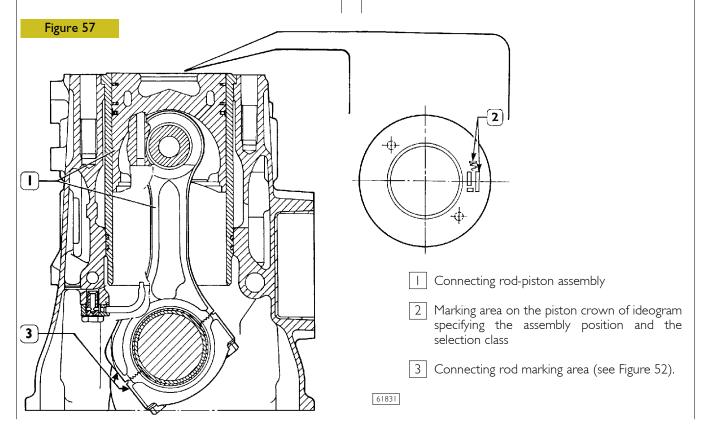
Fit the half-bearings (I), selected as described on pages 19 to 24, both on the connecting rod and on the stand.



If the cap (I) is fitted upsidedown, the connecting rod should be discarded.

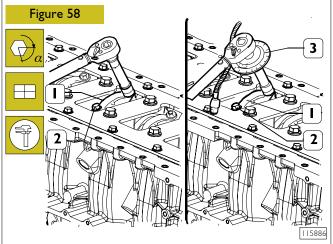
NOTE As spares, class A pistons are provided and can be fitted also to cylinder barrels belonging to class B.

Fit the connecting rod-piston assemblies (1) into the piston liners (2) using band 99360605 (1, Figure 56). Check the following:


the openings of the split rings are offset by 120°;

- all pistons belong to the same class, A or B;
- ideogram stamped on the piston crown is placed toward the engine flywheel, or the cavity, on the piston cover, corresponds to the position of the oil spray nozzles.

Piston protrusion check


Once assembly is complete, check piston protrusion from cylinder barrels: it must be 0.873 to 1.177 mm.

Checking assembly clearance of big end pins

To check the clearance proceed as follows:

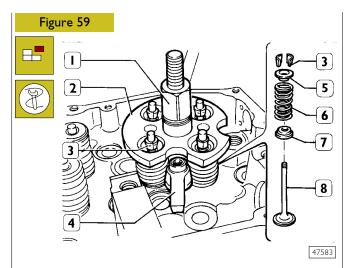
connect the connecting rods to the relative main journals, place a length of calibrated wire on the latter.

Install the connecting rod caps (1) with half-bearings; tighten the connecting rod cap fixing screws (2) to 50 Nm (5 kgm) torque. By tool 99395216 (3), tighten the screws further at 90° angle.

Remove the caps and check the clearance by comparing the width of the calibrated wire with the scale calibration on the envelope containing the wire.

CYLINDER HEAD

Before dismounting cylinder head, check cylinder head for hydraulic seal by proper tooling; in case of leaks not caused by cup plugs or threaded plugs, replace cylinder head.


NOTE In case of plugs dismounting/replacement, on mounting, apply sealant Loctite 270 on plugs.

Dismounting the valves

NOTE

Before dismounting cylinder head valves, number them in view of their remounting in the position observed on dismounting should they not have to be overhauled or replaced.

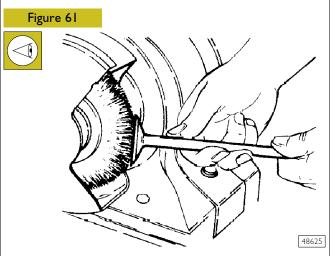
Intake valves are different form exhaust valves in that they have a notch placed at valve head centre.

Install and fix tool 99360264 (2) with bracket (4); tighten by lever (1) until cotters are removed (3); remove the tool (2) and the upper plate (5), the spring (6) and the lower plate (7).

Repeat the operation on all the valves.

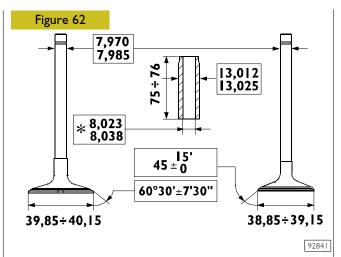
Turn the cylinder head upside down and remove the valves (8).

Checking the planarity of the head on the cylinder block


Figure 60 (Demonstration)

36159

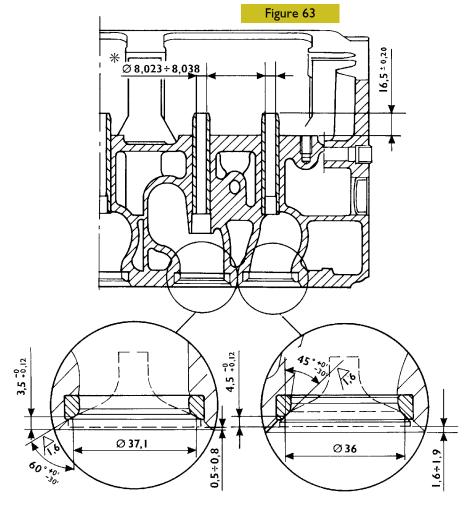
The planarity (1) is checked using a ruler (2) and a thikness gauge (3). If deformations exist, surface the head using proper surface grinder; the maximum amount of material to be removed is 0.2 mm.


NOTE After leveling, make sure that valve sinking and injector protrusion are as described in the relative paragraph.

VALVE Removing deposits and checking the valves

Remove carbon deposits using the metal brush supplied. Check that the valves show no signs of seizure or cracking.

Check the diameter of the valve stem using a micrometer (see Figure 62) and replace if necessary.



MAIN DATA - VALVES AND VALVE GUIDES

* Values to be obtained after installing the valve guides

Check, by means of a micrometer, that valve stem diameters are as specified; if necessary, grind the valves seat with a grinder, removing the minimum quantity of material.

VALVE GUIDES

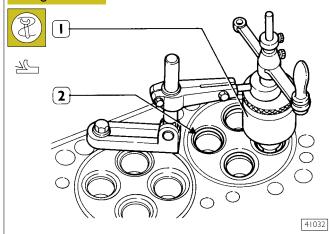
INSTALLATION DIAGRAM FOR VALVE GUIDES AND VALVES

* Values to be obtained after installing the guide valves

47509

Replacing of valve guides

Remove valve guides by means of tool 99360288.

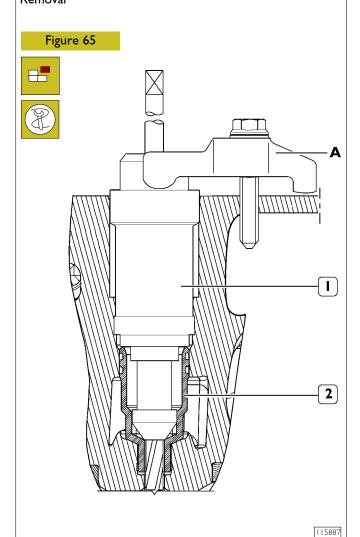

Install by means of tool 99360288 equipped with part 99360294, which determines the exact installation position of valve guides into the cylinder heads; if they are not available, install the valve guides in the cylinder head so that they project out by mm 16.3 to 16.7 (Figure 63).

After installing the valve guides, smooth their holes with sleeker 99390310.

Replacing - Reaming the valve seats

To replace the valve seats, remove them using the appropriate tool.

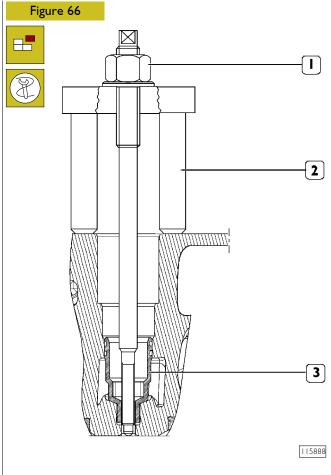
Figure 64


Ream the valve seats (2) on cylinder head using tool (1).

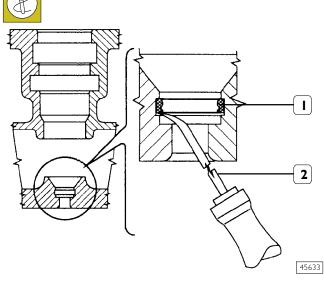
NOTE Valve seats must be reamed whenever valves or valve guides are replaced or ground.

After reaming the valve seats, use tool 99370415, to make sure that the valve position, with respect to the cylinder head surface, is the following:

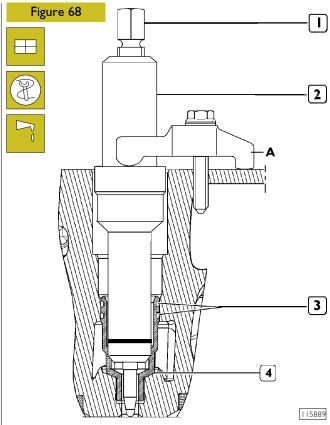
- -0.5 to -0.8 mm (recessing) of exhaust valves;
- -1.6 to 1.9 mm (recessing) of discharge valves.


REPLACING INJECTOR HOLDER CASESRemoval

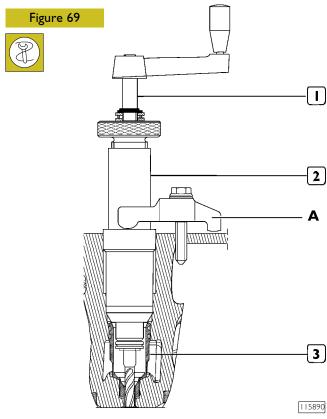
To replace the injector case (2), act as follows:


☐ thread the case (2) with tool 99390804 (1).

Carry out operations described in the following figs. by fixing tools to the cylinder head by means of braket A.



fasten extractor 99342149 (2) to case (3), by tightening the nut (1), and pull out the case from cylinder head.


Figure 67

Remove any residue (1), with tool 99390772 (2), from the cylinder head groove.

Lubricate sealing rings (3) and fit them to the case (4); fix tool 99360554 (2) to the cylinder head by means of bracket **A**, install the new case, tighten the screw (1), upsetting the case lower part.

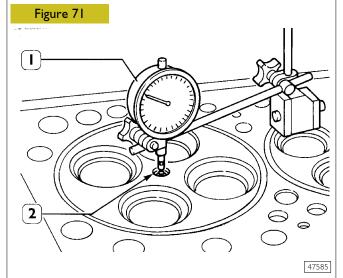
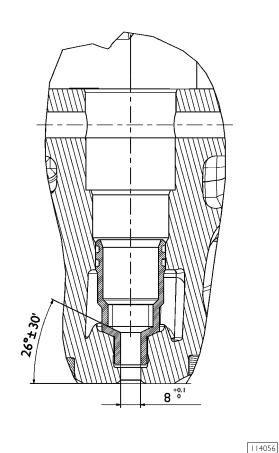

Adjust the casing hole (3) with borer 99394043 (1) and guide bushing 99394045 (2).

Figure 70 2 A 3

Through miller 99394044 (1) and bushing 99394045 (2), ream the injector seat in the case (3), check the injector protrusion from the cylinder head plane which must be 1.2 to 1.5 mm.


115891

Checking protrusion of injectors

Using dial gauge (1), check the protrusion of the injector (2) which must be 1.2 to 1.5 mm.

INSTALLATION DIAGRAM FOR INJECTOR CASE

Print P2D32C006 E

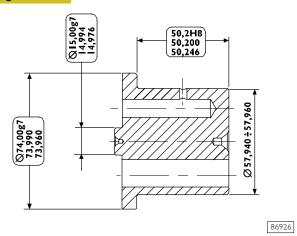

TIMING GEAR Camshaft drive

Figure 73 2 3 4 6 7 8

TIMING CONTROL COMPONENT PARTS
1. Camshaft - 2. Bushing - 3. Pin - 4. Articulated rod 5. Camshaft control gear - 6. Idler gear - 7. Twin idler gear
- 8. Drive shaft driving gear.

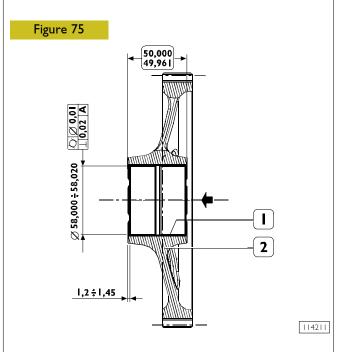
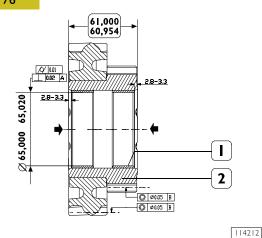

Intermediate gear pin

Figure 74


Rated assembling play between idler gear bushings and pins: $0.040 \div 0.080$ mm.

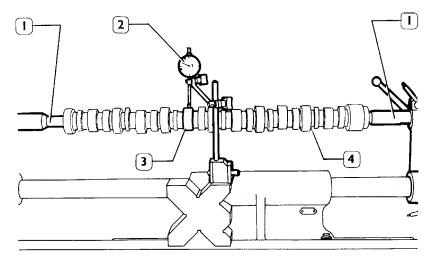
Idler gear

Twin idler gear

Figure 76

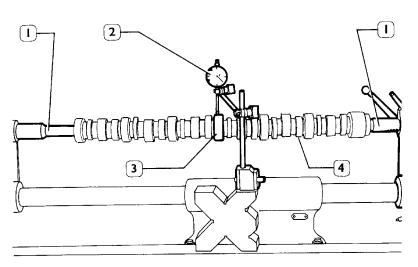
Replacing the bushings

Bushings (1, Figures 75-76) can be replaced when they are worn. Put up the bushing, then grind it so as to bring it to a dimension of \emptyset 65.010 \pm 0.10 mm.


NOTE Bushing fitting in gears (2, Figures 75-76) must be performed in arrow direction, placing them as shown in figures.

Camshaft Checking cam lift and pin alignment

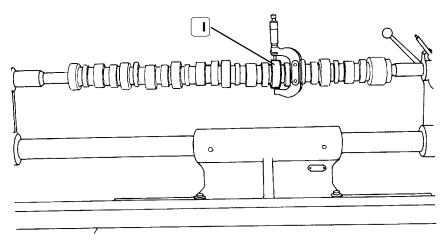
Figure 77


47506

Place the camshaft (4) on the tailstock (1) and check cam lift (3) using a centesimal gauge (2); values are shown in table on page 9.

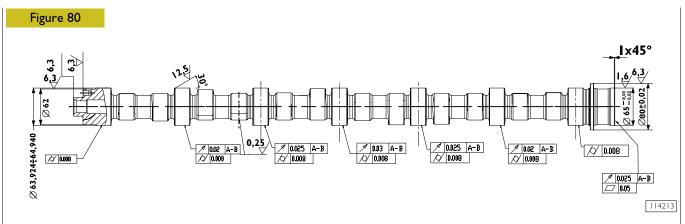
Figure 78

47507


When the camshaft (4) is on the tailstock (1), check alignment of supporting pin (3) using a centesimal gauge (2); it must not exceed 0.030 mm.

If misalignment exceeds this value, replace the shaft.

Figure 79

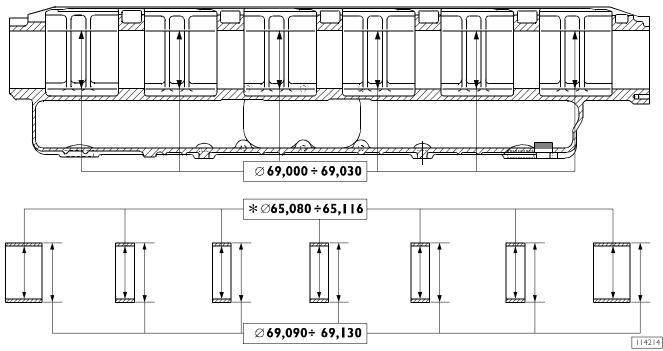


47505

In order to check installation clearance, measure bush inner diameter and camshaft pin (1) diameter; the real clearance is obtained by their difference.

If clearance exceeds 0.150 mm, replace bushes and, if necessary, the camshaft.

Base - May 2010

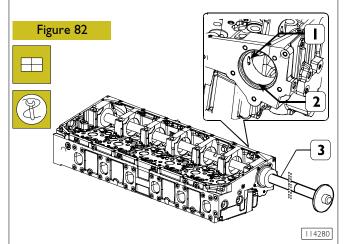

MAIN DATA - CAMSHAFT AND TOLERANCES

The surfaces of shaft supporting pin and cams must be extremely smooth; if you see any sign of seizing or scoring, replace the shaft and the relative bushes.

TOLERANCES TOLERANCE CHARACTERISTIC		SYMBOL
ORIENTATION	Perpendicularity	
POSITION	POSITION Concentricity or coaxial alignment	
OSCILLATION	Circular oscillation	1
IMPORTANCE	SYMBOL	
CRITICAL	©	
IMPORTANT	\oplus	
SECONDARY	Θ	

Bushes

Figure 81

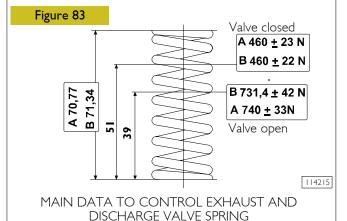

MAIN DATA - CAMSHAFT BUSHES AND RELATIVE BLOCK SEATS

* Bush inner diameter after installation

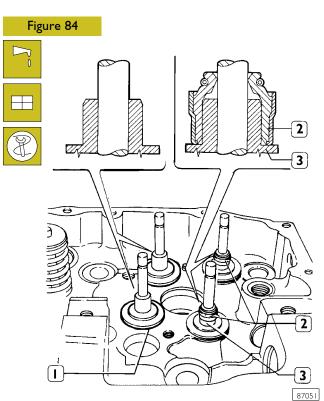
The bush surfaces must not show any sign of seizing or scoring; if they do replace them.

Measure the bush inner diameters with a baremeter and replace them, if the value measured exceeds the tolerance value. To take down and fit back the bushes, use the proper tool 99360487.

Use beater 99360505 to change bushings Removal

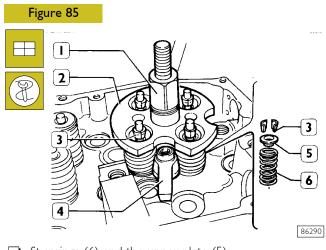

Use tool 99360505 (3) fitted as shown in fig. to remove bushings (2).

Accurately position beater during removal phase.


Fitting

For fitting, reverse operations performed for removal, with care to make lube hole (1), drilled on bushing, coincide with corresponding hole in housing.

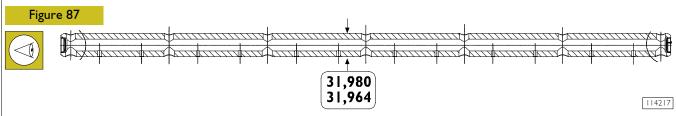
VALVE SPRINGS


Fitting the valves and oil seal ring

Lubricate the valve stem and insert the valves in the respective valve guides; fit the lower caps (I). Use tool 99360292 to fit the oil seal (2) on the valve guides (3) of the exhaust valves; then, to fit the valves, proceed as follows.

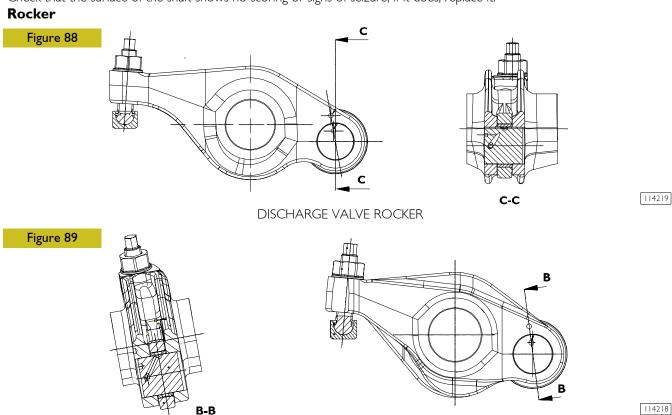
NOTE Should valves not have been overhauled or replaced, remount them according to numbering performed on dismounting.

Intake valves are different form exhaust valves in that they have a notch placed at valve head centre.


- fit springs (6) and the upper plate (5);
- apply tool 99360264 (2) and block it with bracket (4); tighten the lever (1) until cotters are installed (3), remove tool (2).

114216

ROCKER SHAFT Figure 86


The camshaft eccentric elements control the 12 valve rocker arms directly. Valve control rocker arms are fitted directly on rocker arm shaft. Rocker arms slide directly on cam profiles by rollers. The other end operates on a crosspiece laid directly on the two valve rods. A pad is placed between rocker arm adjustment screw and crosspiece. Two lube ducts are machined inside rocker arms. Rocker arms shaft runs through the cylinder head; it must be removed to reach all units below.

Shaft

MAIN DATA OF THE ROCKER ARM SHAFT

Check that the surface of the shaft shows no scoring or signs of seizure; if it does, replace it.

EXHAUST VALVES ROCKER

The bush surfaces must not show any trace of scoring of excessive wear; otherwise, replace bushes or the whole rocker.

TIGHTENING TORQUES

PART			TOR	QUE
			Nm	kgm
Pipe union for piston cooling nozzle		M12x1.5	35 ± 2	3.5 ± 0.2
Heat exchanger retaining screws			63 ± 7	6.3 ± 0.7
Plug			125 ± 15	12.5 ± 1.5
Spacer and oil sump fastening screws				
, , ,		M10x1.5x45	41.5 ± 3.5	4.1 ± 0.3
Gearcase fastening screws to cylinder	^ block:			
,		M10×1.25	41.5 ± 3.5	4.1 ± 0.3
		M12×1.75	63 ± 7	6.3 ± 0.7
		M8×1.25	23.5 ± 1.5	2.3 ± 1.5
Cylinder head fastening screw ♦		1 10/(1.25	25.5 ± 1.5	2.5 ± 1.5
	re-tightening		50	5
	re-tightening re-tightening		100	10
	ngle closing		90	
9	ngle closing		75	
Rocker arm shaft fastening screw	0	M12×1.75×130	104.5 ± 10.5	10.4 ± 1
Locknut for rocker arm adjusting scre	ew ♦		39 ± 5	3.9 ± 5
Electroinjector retaining bracket scre	ws ♦			
, ,		M10x1.5x40	39 ÷ 43	$3.9 \div 4.3$
Shoulder plate fastening screws to he	ead ♦		23.5 ± 3.5	2.3 ± 0.3
Engine support bracket fastening scre			74 ± 8	7.4 ± 0.8
Gear fastening screws to camshaft •	,			
G	re-tightening		25	2.5
	re-tightening		45	0
Phonic wheel fastening screws to dist			8.5 ± 1.5	0.8 ± 0.1
Exhaust pipe fastening screws •				
pre-tightening			32.5 ± 7.5	3.2 ± 0.7
tightening			47.5 ± 2.5	4.7 ± 0.2
Connecting rod cap fastening screws:	. ♦	M12×1.25×69		
First stage p	re-tightening		50	5
	re-tightening		90	0
Engine flywheel fastening screws ♦		M18×1.5×72		
	re-tightening		120	12
	pre-tightening		90	o .
Flywheel pulley fastening screws to c				
	re-tightening		70	7
9	re-tightening		50	o
Main journal retaining screws ◆		M16x2x168		
First stage p	re-tightening		140	14
Second stage p	re-tightening		60° +	60°
 Lubricate with oil MOLYKOTE b 	,			
 Lubricate with graphitized oil bef 	ore assembly			

PART		TOR	.QUE
		Nm	kgm
Damper flywheel fasten	ing screws ♦	115 ± 15	11.5 ± 1.5
Idler gear pin fastening s	crews •		
First stage	pre-tightening	30	3
Second stage	angle closing	90)°
Idle gear link rod fasteni	ng screw	24.5 ± 2.5	2.4 ± 0.2
Oil pump fastening scre	w	24.5 ± 2.5	2.4 ± 0.2
Oil pump suction rose f	astening screw	24.5 ± 2.5	2.4 ± 0.2
Front cover fastening sc	rew to cylinder block	19 ± 3	1.9 ± 0.3
Control unit fastening so	crew to cylinder block	19 ± 3	1.9 ± 0.3
Fuel filter support faster	ing screw to cylinder head ◆	24.5 ± 2.5	2.4 ± 0.2
Screw securing the engi	ne support to the wheelcase ◆		
First stage	pre-tightening	100	10
Second stage	angle closing	60)°
Turbo-compressor faste	ning screws and nuts •		
pre-tightening		35 ± 5 46 ± 2	3.5 ± 0.5 4.6 ± 0.2
tightening			
Water pump fastening s	<u>'</u>	24.5 ± 2.5	2.4 ± 0.2
Pulley fastening screw to		55 ± 5	5.5 ± 0.5
Rocker arm cover faster		8.5 ± 1.5	0.8 ± 0.1
	ng screws to cylinder head	24.5 ± 2.5	2.4 ± 0.2
Automatic tightener fast	tening screws to cylinder block	45 ± 5	4.5 ± 0.5
Fixed tightener fastening	g screws to cylinder block	105 ± 5	10.5 ± 0.5
Fan support fastening so	rews to cylinder block	24.5 ± 2.5	2.4 ± 0.2
Starter fastening screws		44 ± 4	4 ± 0.4
Air heater on cylinder h	ead	30 ± 3	5 ± 0.5
Hydraulic power steerin	g pump gear fastening nut	105 ± 5	10.5 ± 0.5
Air conditioner compre	ssor fastening screw to support	24.5 ± 2.5	2.4 ± 2.5
Alternator support supe	rior fastening screw	71.5 ± 4.5	7.1 ± 0.4
Alternator bracket faste	ning screw to cylinder block	24.5 ± 2.5	2.4 ± 0.2
Water pipe unions		35	3.5
Water temperature sen	sor	32.5 ± 2.5	3.2 ± 0.2
	OLYKOTE before assembly hitized oil before assembly		

PART			TORQUE	
		-	Nm	kgm
Flywheel rev sensor faste	ning screw		8 ± 4	0.8 ± 0.2
Camshaft rev sensor faste	ening screw		8 ± 4	0.8 ± 0.4
P.D.E solenoid connector	fastening screw		1.62 ± 0.3	0.1 ± 0.3
Overboost pressure sens	or fastening screw		8 ± 2	0.8 ± 0.2
Absolute pressure sensor	fastening screw		22.5 ± 2.5	2.2 ± 0.2
P.W.M. control valve fast	ening screw/nut		8 ± 2	0.8 ± 0.2
Fuel/coolant temperature	esensor		35	3.5
Coolant temperature ind	icator		23.5 ± 2.5	2.3 ± 0.2
Filter clogging sensor			10	1
Oil temperature switch			25 ± 1	2.5 ± 0.1
Oil pressure sensor			25 ± 1	2.5 ± 0.1
Electric wire fastening scr	rew		8 ± 2	0.8 ± 0.2
Gear fastening screws to	camshaft •	M14x2x50		
First stage	pre-tightening		40	
Second stage	pre-tightening		30	0°
Gear fastening screws to	camshaft •	M14x2x50		
			150 ÷ 184	15 ÷ 18.4
Heater fastening screw		M8 x 60	24.5 ± 2.5	2.5 ± 0.2
		M8 × 90	24.5 ± 2.5	2.5 ± 0.2
Gear fastening screws to	camshaft •	MI0 × 1.25 × 20		
			46.5 ÷ 52	4.65 ÷ 5.2
Gear fastening screws to	camshaft •			
			46.5 ÷ 52	4.65 ÷ 5.2
Alternator positive retain	ing nut	M8×1.25	12.5 ± 2.5	1.3 ± 0.3
Starter terminal nut 30		M10x1.5	21 ± 3.4	2.1 ± 0.3
Starter terminal nut 50		M5×0.8	3.6 ± 1	0.4 ± 0.1

F2C CURSOR ENGINES SECTION 5 - TOOLS

TOOLS Page TOOLS 3 EQUIPMENT MODIFIED FOR ADAPTATION TO CURSOR 9 ENGINE II

2 SECTION 5 - TOOLS F2C CURSOR ENGINES

F2C CURSOR ENGINES SECTION 5 - TOOLS **3**

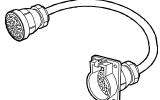
TOOLS TOOL NO. **DESCRIPTION** 99322230 Rotary telescopic stand 99331043 Adapter connectors 38 pin to 30 pin (Part of 99368554) 99340051 Extractor for crankshaft front gasket 99340054 Extractor for crankshaft rear gasket 99342149 Extractor for injector-holder 99346245 Tool to install the crankshaft front gasket

SECTION 5 - TOOLS F2C CURSOR ENGINES

TOOLS TOOL NO. **DESCRIPTION** 99346260 Tool to install the crankshaft back gasket Pliers for assembling and disassembling piston split rings 99360184 (105-106 mm) 99360264 Tool for assembly and disassembly engine valves 99360288 Box wrench for block junction bolts to the underblock 99360292 Box wrench for block junction bolts to the underblock 99360294 Tool to fit back valve guide (to be used with 99360288)

F2C CURSOR ENGINES SECTION 5 - TOOLS **5**

TOOLS TOOL NO. **DESCRIPTION** Compression tool for checking the protrusion of cylinder liners 99360334 Cylinder liner compression plate 99360335 (to be used with 99360334) Tool for rotating flywheel 99360341 99360500 Tool to lift crankshaft 99360505 Beater for tree removal and replacement bushings distribution 99360558 Tool for lifting and carrying shaft rockers


SECTION 5 - TOOLS F2C CURSOR ENGINES

TOOLS TOOL NO. **DESCRIPTION** 99360585 Swing hoist for engine disassembly assembly Belt to insert piston in cylinder liner (60 - 125 mm) 99360605 99360612 Tool for positioning engine P.M.S. 99360613 Tool for timing of phonic wheel on timing gear 99360703 Tool to stop cylinder liners 99360706 Tool to extract cylinder liners

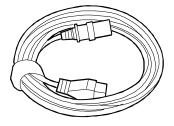
F2C CURSOR ENGINES SECTION 5 - TOOLS

7 **TOOLS** TOOL NO. **DESCRIPTION** 99360724 Ring (115 mm) (to be used with 99360706) Rotary engine stand mounting bracket 99322230 99361042 99365054 Tool for injector holder heading Series 8 keys to insert 14x18 (13-17-18-19-21-22-24-27-30 mm) 99368542 PT - Plus 99327210

99368555

30 to 19 pin adapter (component 99368554)

SECTION 5 - TOOLS F2C CURSOR ENGINES

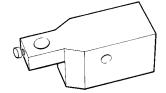

TOOLS

8

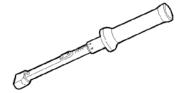
TOOL NO.

DESCRIPTION

99368556


Adapter (5 m) for connection to PT01 testers diagnostic socket 30-pin (component 99368554)

99368558


Adapter (80 cm) for connection to PTO1 testers diagnostic socket 30 poles Denox 2 (part of 99368554)

99370415

Base supporting the dial gauge for checking cylinder liner protrusion (to be used with 99395603)

99389833

14x18 plug wrench (20-120 Nm)

99389834

Torque screwdriver for calibrating the injector solenoid valve connector check nut

99390310

Valve guide sleeker

F2C CURSOR ENGINES SECTION 5 - TOOLS

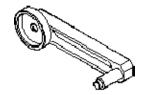
TOOLS TOOL NO. **DESCRIPTION** 99390772 Tool for removing injector holding case deposits 99390804 Tool for threading injector holding cases to be extracted Reamer to rectify injector holder lower side 99394043 (to be used with 99394014) Reamer to rectify injector holder lower side 99394044 (to be used with 99394015) Bushing (used with 99394043 and 99394044) 99394045 Measuring pair for angular tightening with 1/2" 99395216 and 3/4" square couplings

SECTION 5 - TOOLS F2C CURSOR ENGINES

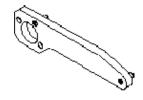
TOOLS

10

TOOL NO.


DESCRIPTION

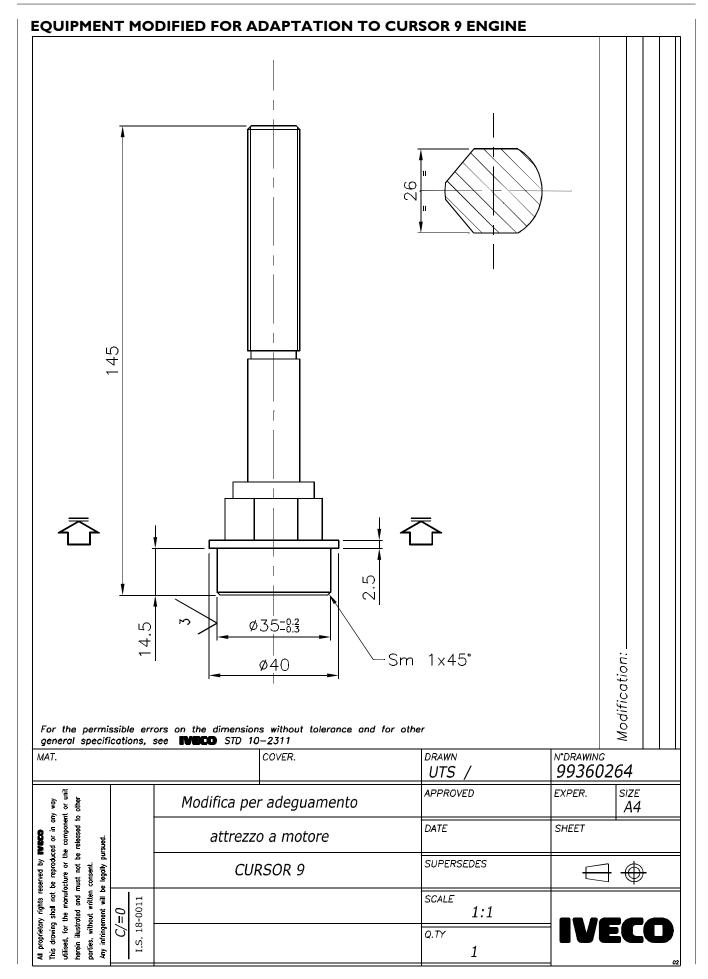
99395221


Gauge for determining distance between tree distribution and high pressure pump

99395222

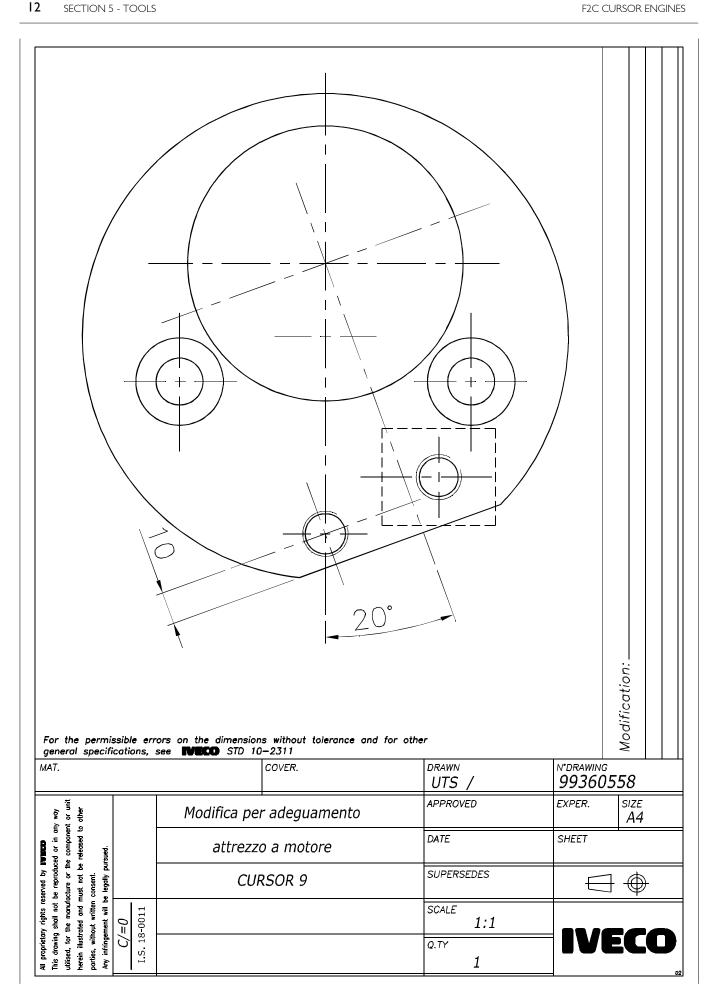
Gauge for determining distance between camshaft and gear for reference

99395223

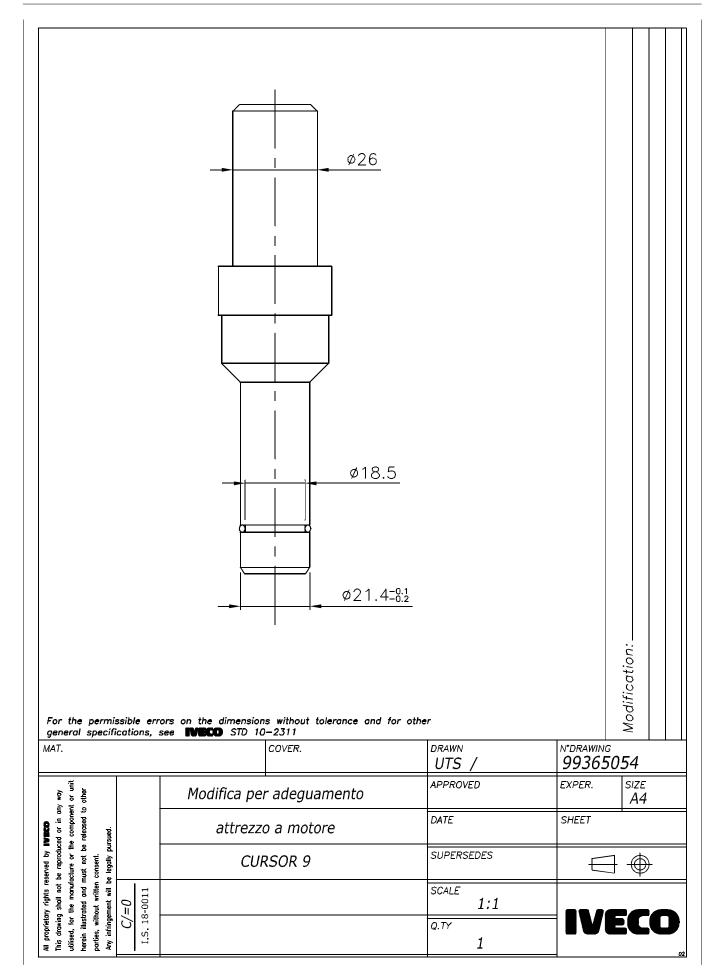


Gauge for camshaft phasing

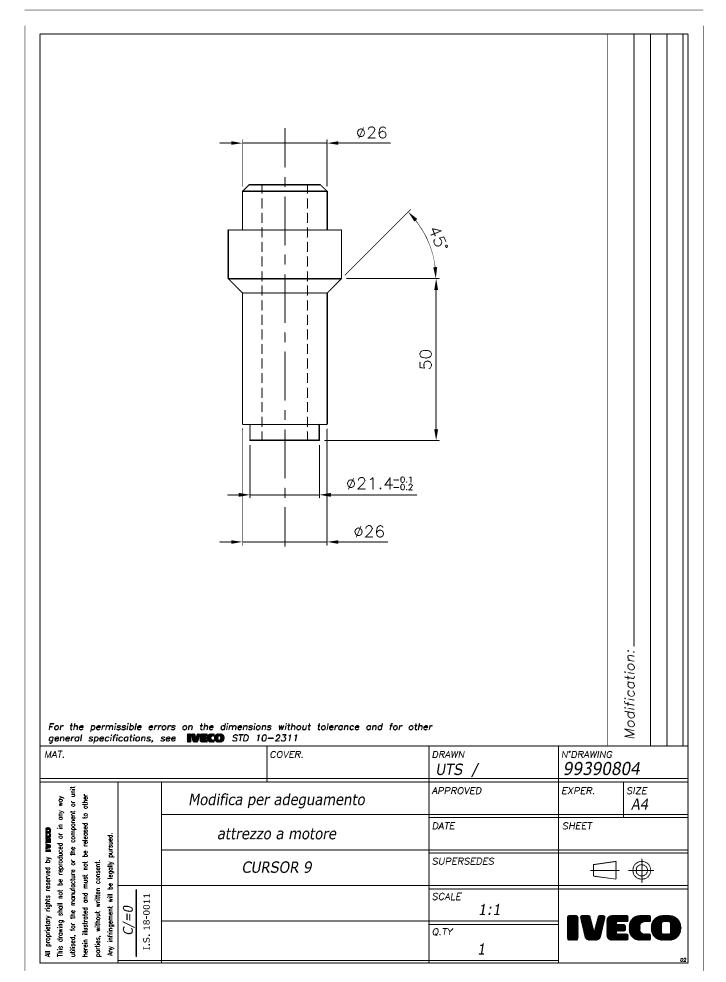
99395603



Dial gauge (0 - 5 mm)



П


SECTION 5 - TOOLS F2C CURSOR ENGINES

13

14

Appendix	
	Page
SAFETY PRESCRIPTIONS	3

2 APPENDIX F2C CURSOR ENGINES

F2C CURSOR ENGINES 3 **APPENDIX**

SAFETY PRESCRIPTIONS Standard safety prescriptions

Particular attention shall be drawn on some precautions that must be followed absolutely in a standard working area and whose non fulfillment will make any other measure useless or not sufficient to ensure safety to the personnel in-charge of maintenance.

Be informed and inform personnel as well of the laws in force

	ulating safety, providing information documentation llable for consultation.
	Keep working areas as clean as possible, ensuring adequate aeration.
	Ensure that working areas are provided with emergency boxes, that must be clearly visible and always provided with adequate sanitary equipment.
	Provide for adequate fire extinguishing means, properly indicated and always having free access. Their efficiency must be checked on regular basis and the personnel must be trained on intervention methods and priorities.
	Organize and displace specific exit points to evacuate the areas in case of emergency, providing for adequate indications of the emergency exit lines.
	Smoking in working areas subject to fire danger must be strictly prohibited.
	Provide Warnings throughout adequate boards signaling danger, prohibitions and indications to ensure easy comprehension of the instructions even in case of emergency.
Pro	evention of injury
	Do not wear unsuitable cloths for work, with fluttering ends, nor jewels such as rings and chains when working close to engines and equipment in motion.
	Wear safety gloves and goggles when performing the following operations: - filling inhibitors or anti-frost - lubrication oil topping or replacement - utilization of compressed air or liquids under pressure (pressure allowed: ≤ 2 bar)
	Wear safety helmet when working close to hanging loads or equipment working at head height level.
	Always wear safety shoes when and cloths adhering to the body, better if provided with elastics at the ends.
	Use protection cream for hands.
	Change wet cloths as soon as possible
	In presence of current tension exceeding 48-60 V verify efficiency of earth and mass electrical connections. Ensure that hands and feet are dry and execute working operations utilizing isolating foot-boards. Do not carry out working operations if not trained for.
	Do not smoke nor light up flames close to batteries and to any fuel material.
	Put the dirty rags with oil, diesel fuel or solvents in

anti-fire specially provided containers.

	Do not execute any intervention if not provided with
_	necessary instructions.

- Do not use any tool or equipment for any different operation from the ones they've been designed and provided for: serious injury may occur.
- In case of test or calibration operations requiring engine running, ensure that the area is sufficiently aerated or utilize specific vacuum equipment to eliminate exhaust gas. Danger: poisoning and death.

During maintenance

Ne	ever o	pen filler cap	of cooling	circuit v	vhen the e	ngine
is	hot.	Operating	pressure	would	provoke	high
tei	mpera	ture with se	rious dange	er and ris	sk of burn.	Wait
un	it the	temperature	e decreases	s under 5	50°C.	

- Never top up an overheated engine with cooler and utilize only appropriate liquids.
- Always operate when the engine is turned off: whether require maintenance particular circumstances intervention on running engine, be aware of all risks involved with such operation.
- Be equipped with adequate and safe containers for drainage operation of engine liquids and exhaust oil.
- Keep the engine clean from oil tangles, diesel fuel and or chemical solvents.
- Use of solvents or detergents during maintenance may originate toxic vapors. Always keep working areas aerated. Whenever necessary wear safety mask.
- Do not leave rags impregnated with flammable substances close to the engine.
- Upon engine start after maintenance, undertake proper preventing actions to stop air suction in case of runaway speed rate.
- Do not utilize fast screw-tightening tools.
- Never disconnect batteries when the engine is running.
- Disconnect batteries before any intervention on the electrical system.
- Disconnect batteries from system aboard to load them with the battery loader.
- After every intervention, verify that battery clamp polarity is correct and that the clamps are tight and safe from accidental short circuit and oxidation.
- Do not disconnect and connect electrical connections in presence of electrical feed.
- ☐ Before proceeding with pipelines disassembly (pneumatic, hydraulic, fuel pipes) verify presence of liquid or air under pressure. Take all necessary precautions bleeding and draining residual pressure or closing dump valves. Always wear adequate safety mask or goggles. Non fulfillment of these prescriptions may cause serious injury and poisoning.

4 APPENDIX F2C CURSOR ENGINES

	Avoid incorrect tightening or out of couple. Danger:	Respect of the Environment
	incorrect tightening may seriously damage engine's components, affecting engine's duration.	Respect of the Environment shall be of primary importance: all necessary precautions to ensure
	Avoid priming from fuel tanks made out of copper alloys and/or with ducts not being provided with filters.	personnel's safety and health shall be adopted. Be informed and inform the personnel as well of laws in
	Do not modify cable wires: their length shall not be changed.	force regulating use and exhaust of liquids and engine exhaust oil. Provide for adequate board indications and
	Do not connect any user to the engine electrical equipment unless specifically approved by Iveco.	organize specific training courses to ensure that personnel is fully aware of such law prescriptions and of basic preventive safety measures.
	Do not modify fuel systems or hydraulic system unless lveco specific approval has been released. Any unauthorized modification will compromise warranty assistance and furthermore may affect engine correct working and duration.	Collect exhaust oils in adequate specially provided containers with hermetic sealing ensuring that storage is made in specific, properly identified areas that shall be aerated, far from heat sources and not exposed to fire danger.
For	engines equipped with electronic gearbox:	Handle the batteries with care, storing them in aerated
	Do not execute electric arc welding without having priory removed electronic gearbox.	environment and within anti-acid containers. Warning: battery exhalation represent serious danger of
	Remove electronic gearbox in case of any intervention requiring heating over 80°C temperature.	intoxication and environment contamination.
	Do not paint the components and the electronic connections.	
	Do not vary or alter any data filed in the electronic gearbox driving the engine. Any manipulation or alteration of electronic components shall totally compromise engine assistance warranty and furthermore may affect engine correct working and duration.	

CURSOR ENGINES G-DRIVE

Part 2 G-DRIVE CURSOR ENGINES

Section

General specifications

I

G-Drive Application

2

PREFACE TO USER'S GUIDELINE MANUAL

Section 2 is specific of use.

2 CURSOR ENGINES G-DRIVE

NOTE Part no. 2 is characterized by describing a particular industrial/agricultural application: G-Drive motors.

These engines are marketed as an assembly that is also equipped with the air/coolant and possibly air/air (intercooler) cooling device.

The description of this application gives the differences with the industrial application (given in the preceding Parts) and reference must be made to it for all repair and maintenance work.

CURSOR ENGINES G-DRIVE

UPDATING

Section	Description	Page	Date of revision

Τ

SECTION I

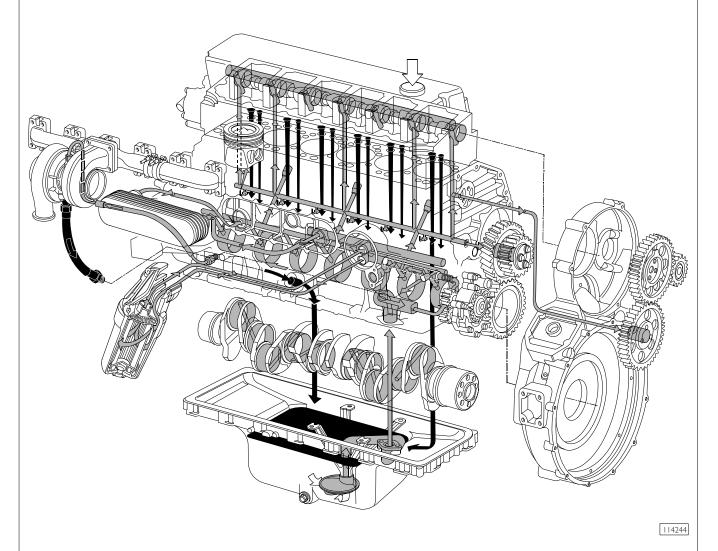
General speci	fications
---------------	-----------

General specifications	
	Page
CORRESPONDENCE BETWEEN TECHNICAL CODE AND COMMERCIAL CODE	3
LUBRIFICATION	4
COOLING	5
Description	5
Operation	5
FUEL FEED	6
TURBOCHARGING	7

3

CORRESPONDENCE BETWEEN TECHNICAL CODE AND COMMERCIAL CODE

Technical Code	Commercial Code
F2CE9685A*E001	CURSOR 87TE X


LUBRIFICATION

Engine lubrication is obtained with a gear pump driven by the crankshaft via gears.

A heat exchanger governs the temperature of the lubricating oil. The oil filter, signalling sensors and safety valves are installed in the intercooler.

Figure 1

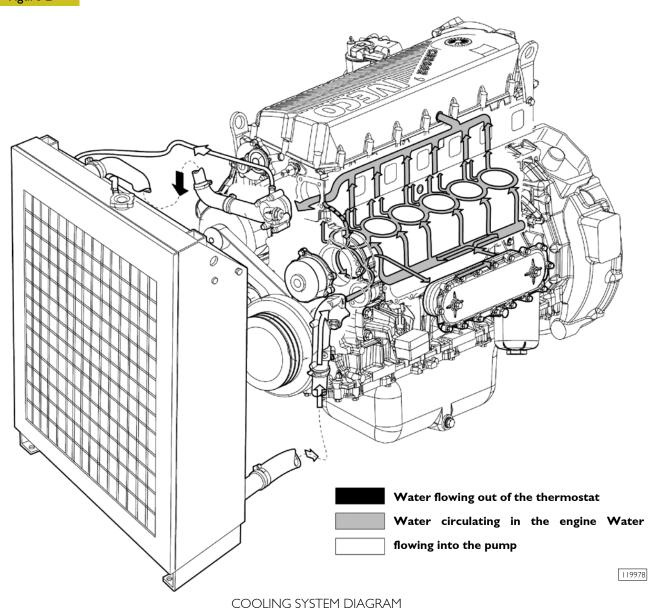
(Demonstration)

Dropping oil Pressure oil

LUBRICATION DIAGRAM

COOLING

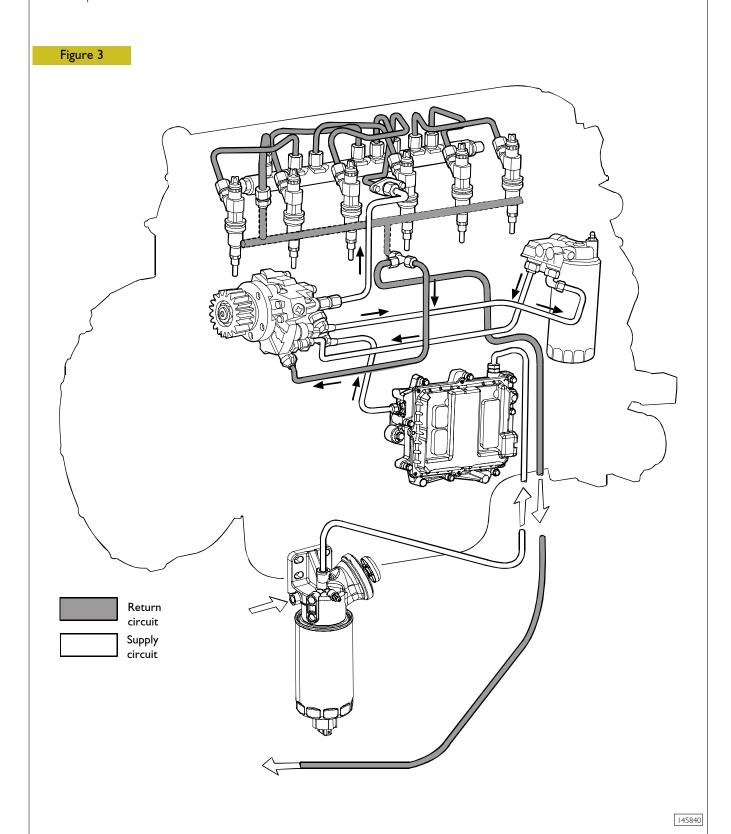
Description


The engine cooling system is of the closed-circuit, forced circulation type. It consists mainly of the following components:

- expansion tank,
- a heat exchanger to cool down lubrication oil;
- a water pump with centrifugal system incorporated in the cylinder block;
- fan;
- a 2-way thermostat controlling the coolant circulation.

Operation

The water pump is actuated by the crankshaft through a poli-V belt and sends coolant to the cylinder block, especially to the cylinder head (bigger quantity). When the coolant temperature reaches and overcomes the operating temperature, the thermostat is opened and from here the coolant flows into the radiator and is cooled down by the fan.



FUEL FEED

The Common Rail supply system is equipped with a special pump that maintains fuel at constant high pressure regardless from phase and cylinder under injection and accumulated in an common duct shared by all electric injectors.

Therefore, fuel at injection pressure, calculated by ECU, is always available at electric injection inlet.

When the solenoid valve of an injector is energized by ECU, in related cylinder the injection of fuel taken directly from the rail takes place.

TURBOCHARGING The turbocharging system consists of: air filter; ☐ Turbocharger. Figure 4 Exhaust Inlet Engine exhaust gas Intake air 119980 SUPERCHARGING SYSTEM DIAGRAM

Τ

SECTION 2

G-Drive application

	Page
GENERAL CHARACTERISTICS	. 3
ASSEMBLY CLEARANCE DATA	. 5
ENGINE CONNECTION AND DISCONNECTIC FROM THE RADIATOR)N .
MAINTENANCE PLANNING	. 13
MAINTENANCE PLANNING	. 15
☐ Recovery	. 15
☐ Inspection and/or maintenance interventions	. 15
OPERATIONS OUTSIDE THE PLAN	. 16
MAINTENANCE PROCEDURES	. 17
☐ Checks and controls	. 17
PRINCIPLE ELECTRICAL DIAGRAM	. 24
☐ Key to components	. 25
☐ Function symbols for the control panel	. 25
ENGINE INTERFACE BOX	. 26
Description	. 26
Connectors	. 27
EDC 7 UC31 ELECTRONIC CONTROL UNIT .	. 30
☐ EDC control unit PIN-OUT	. 31

3

GENERAL CHARAC	TERISTICS		
	Туре		F2CE9685A*E001
•	Cycle		Diesel 4 strokes
	Feeding		Turbocharged
	Injection		Direct
	N. of cylinders		6 on-line
	Diameter	mm	117
	Stroke	mm	135
	Total displacement	cm ³	8710
ϱ	Compression ratio		1:15.9 ± 0.8
	USA market Maximum power (prime) Maximum power (standby)	kW kW rpm	251 276 1800
	SUPERCHARGING		With intercooler
	Turbocharger type		HX 55
	LUBRICATION		Forced by gear pump, relief valve single action oil filter
(7 bar)	Oil pressure (warm engine)		
	- idling - peak rpm	bar bar	- -
	COOLING Water pump control Thermostat		Liquid Through belt
	- start of opening	°C	85 ± 1.5

NOTE Data, features and performances are valid only if the setter fully complies with all the installation prescriptions provided by FPT.

Furthermore, the users assembled by the setter shall always be in conformance to couple, power and number of turns based on which the engine has been designed.

	Туре		F2C
A	VALVE TIMING		
	opens before T.D.C.	Α	17°
B	closes after B.D.C.	В	31°
C	opens before B.D.C.	D	48°
D.	closes after T.D.C.	С	9°
	For timing check		
	× {	mm	-
x to the second	Running	mm	-
	ſ	mm	0.35 to 0.45
	× {	mm	0.55 to 0.65
	FEED		Bosch Common Rail with CRIN2 injectors and high pressure pump CP3.3
	Nozzle type		DLLA 137
	Injection order		I - 4 - 2 - 6 - 3 - 5
bar	Injection pressure Injector calibration	bar bar	1800

	Туре	F2C	
	CK AND NISM COMPONENTS	mm	
ØI	Bores for cylinder liners: upper	130.500 to 130.525	
	Ø1 lower	129.510 to 129.535	
	Cylinder liners:		-
	external diameter:		
	upper	130.461 to 130.486	
L	Ø2		
<u> </u>	lower	129.475 to 129.500	
Ø2	length L	226,15 226.15	
	Cylinder liners -	220.13	
\Box	crankcase bores		
	upper	0.014 to 0.064	
	lower	0.010 to 0.060	
	External diameter Ø2	-	
	Cylinder sleeve		
Ø3	inside diameter Ø3A*	117.000 to 117.012	
×	inside diameter Ø3B*	117.010 to 117.022	
Selection class	Protrusion X	0.035 to 0.065	
	Pistons:		
, ∰ øi	measuring dimension X	15	
x 1	external diameter ØIA	116.894 to 116.906	
A	external diameter ØIB	116.904 to 116.916	
Ø2	pin bore Ø2	52.010 to 52.016	
	Piston - cylinder sleeve	52.010 to 32.010	
	A*	0.094 to 0.118	
— s a —	B*	0.094 to 0.118	
Selection class			
₫ <	Piston diameter Ø1	-	
¬≣≓ ×			
	Pistons protrusion X	0.873 to 1.117	
	,		
Ø3	Gudgeon pin Ø3	51.994 to 52.000	
~~~	244,6011 201	31.771 20 32.000	
	Gudgeon pin - pin housing	0.010 to 0.022	

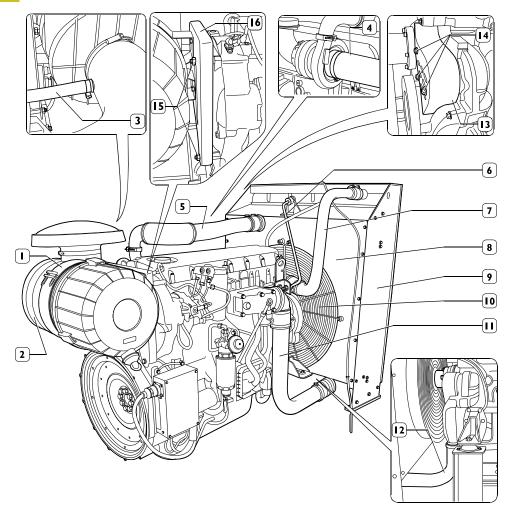
	Type	F2C
	Туре	mm
√ ×ı		2 120 . 2 140
	XI	3,120 ÷ 3,140 3.120 to 3.140
$\bigcirc \bigcirc $	Piston ring grooves X2	2.550 to 2.570
	X3	4.020 to 4.040
	Piston rings: trapezoidal seal ST	3.000
<b>y</b> ∥S I	lune seal S2	2.470 to 2.500
□□□□↓	milled scraper ring	
£ 3 3	with slits and internal	20704-2000
	spring S3	3.970 to 3.990
	I	_
	Piston rings - grooves 2	0.050 to 0.100
	3	0.030 to 0.070
A > 0	Piston rings	-
( XI	Piston ring end gap in cylinder liners	
<u>→                                    </u>	XI	0.3 to 0.4
X3	X2	0.60 to 0.75
	X3	0.35 to 0.65
	Consultational Investigation	
() ¥ ØI	Small end bush housing Ø1	55.700 to 55.730
~ ~ .		
	Big end bearing housing Ø2	85.987 to 86.013
[()	. 1	85.987 to 85.996
	Selection classes $\begin{cases} 1 \\ 2 \end{cases}$	85.997 to 86.005
~ .	<b>L</b> 3	86.006 to 86.013
Ø <b>4</b>	Small end bush diameter	FF 700 to FF 020
$\bigcirc$	outside Ø4	55.780 to 55.820
/\	inside $\varnothing$ 3	52.015 to 52.030
	Big end bearing shell S Red	1.994 to 2.002
<b>*</b>	Green	2.002 to 2.010
<u> </u>	Yellow ●	2.010 to 2.018
	Small end bush - housing	0.05 to 0.08
	Piston pin - bush	0.015 to 0.036
Arr >	Big end bearing	0.127 - 0.254 - 0.508
	Connecting rod weight A	g
/ \	A	3450 to 3470
	Class B	3471 to 3490
$\lfloor \bigcup \rfloor$	С	3491 to 3510

• Fitted in production only and not supplied as spares

	Tuno		F2C
	Туре		mm
X	Measuring dimension	×	125
	Max. connecting rod		
	axis misalignment tolerance	=	0.08
	,	ØI	
	- nominal		92.970 to 93.000
	- class	1	92.970 to 92.980
	- class - class	2 3	92.980 to 92.990 92.990 to 93.000
$\underline{\varnothing}$ I $\underline{\varnothing}$ 2		$\emptyset$ 2	72.770 to 73.000
	- nominal	ΣZ.	81.915 to 81.945
	- class	- 1	81.915 to 81.925
	- class	2	81.925 to 81.935
4/↑/ ∐ _	- class	3	81.935 to 81.945
SI S2	Main bearing shells	SI	01.755 60 01.7 15
<del>&gt;  &lt;</del> >  <	Red	31	2.968 to 2.978
	Green		2.978 to 2.988
	Yellow*		2.988 to 2.998
		S2	2.700 to 2.770
	Big end bearing shells Red	32	1.994 to 2.002
	Green		2.002 to 2.010
	Yellow*		2.010 to 2.018
		Ø3	2.010 to 2.010
	- nominal	23	99.000 to 99.030
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- class	1	99,000 to 99,009
	- class	2	99.010 to 99.019
	- class	3	99.020 to 99.030
	Bearing shells -		
	main journals		0.050 to 0.090
-	Bearing shells -		0.040 to 0.080
	big ends		
<b>A</b> <	Main bearing shells		0.127 - 2.254 - 0.508
H	Big end bearing shells		0.127 - 2.254 - 0.508
	Main journal,		
×I++	thrust bearing	ΧI	39.96 to 40.04
	Main bearing housing,		
	thrust bearing	X2	38.94 to 38.99
X2	J		
V 3 60 10 10 10 10 10 10 10 10 10 10 10 10 10			
	Thrust washer		
	halves	X3	3.38 to 3.43
	Crankshaft end float		0.10 to 0.30
	Alignment I	- 2	-
	Ovalization \ \ \ \ \	- 2	0.04
	Taper	- 2	-
* Fitted in production	only and not supplied as	spare	es

Fitted in production only and not supplied as spares

	Туре	F2C
CYLINDER HEAD	O - VALVE TRAIN	mm
ØI	Valve guide housings in cylinder head ∅I	12.9800 to 12.997
Ø 2	Valve guide	8.023 to 8.038 13.012 to 13.025
<i>₩</i>	Valve guides - housings in the cylinder heads	0.015 to 0.045
	Valve guide	0.2 - 0.4
Ø 4	Valves:	
		7.970 to 7.985 60° 30′ ± 7′ 30″
α	$\bigcap_{\alpha} \bigcirc \bigcirc$	7.970 to 7.985 45° +15°
	Valve stem and its guide	0.040 to 0.070
Ø 1	Valve seat in head  ØI  Outside diameter of valve seat; angle of valve seat in cylinder head:	41.985 to 42.020 40.985 to 41.020
α		42.060 to 42.075 60° - 30' 0' -0,5' 41.060 to 41.075 45° - 30'
×	X 💢	0.5 to 0.8 1.6 to 1.9
\$	Between valve seat and head	0.040 to 0.090
	₩	


Type		F2C	
		m	m
	Valve spring height:	A	В
	free height H under a load of:	70.77	-
H HI H	N 460 ± 23 HIA 2 N 460 ± 22 HIB	5	ı
<del>V</del> V VH	•		
	N 740 ± 33 H2A N 731,4 ± 42 H2B	3:	<del>)</del>
×	Injector protrusion X	1.2 to	o 1.5
Ø Ø Ø	Camshaft bushing housing in the cylinder head: I ⇒ 7 Ø	69.000 to	o 69.030
$ \begin{array}{c c} \varnothing & 2 \\ \hline \varnothing & 1 \\ \hline \varnothing & 3 \end{array} $	Camshaft bearing journals: I ⇒ 7 Ø	64.924 to	o 64.940
Ø	Outer diameter of camshaft bushings:	69.090 to	o 69.130
Ø	Inner diameter of camshaft bushings:	65.080 to	o 65.116
$\Rightarrow$	Bushings and housings in the cylinder head	0.060 to 0.130	
	Bushings and bearing journals	0.14 to	0.192
Н Н	Cam lift:  □  □	7.5 8.2	
Ø 1	ru .	8.2	
	Rocker shaft Ø1	31.964 to	o 31.980
		1	

Туре	F2C	
	туре	mm
	Bushing housing in rocker arms	
		32.025 to 32.041
		32.025 to 32.041
	Between bushings and housings	
		0.045 to 0.077
, r		0.045 to 0.077
TURBOCHARGER		
Туре		HX55
End float		-
Radial play		-

ш

## ENGINE CONNECTION AND DISCONNECTION FROM THE RADIATOR

## Figure I





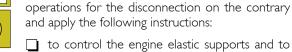
## Removal

Prepare a suitable container near the pipe coupling (12) to recover the coolant. Detach and remove the pipe couplings (12) and (7) operating the clamps.

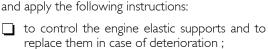
Detach and remove from the engine and from the radiator the pipes (5) and (11) operating on their collars.

Remove the protection grilles (10) and the guard (8) of the fan operating on their fasteners.

Unscrew the engine side retaining nut of the fabric (6) so as to release it.

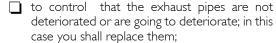

Suitably lock the radiator group (9), the detach it from the basement operating on the fasteners on both sides.

Detach the air filter from the engine (1) operating from collar (4) and the support (16) operating on the fasteners (15) after detaching the oil vapour hose (3) and the pipe coupling (4) from the turbocharger


Remove the screws which fasten the engine supports to the basement and detach the engine.

To access the engine belt, it is necessary to remove the protection guard (13), unscrewing the screws (14).






Refitting



For the connection operation repeat the described







- to clamp the screws and/or nuts to the described couple;
- ☐ to fill the cooling system with cooling liquid;
- ☐ to carry out bleeding operation from the fuel supply system as described in the suited paragraph.
- to control engine oil level;
- to carry out the tests and controls as described in the suited chapter.

Print P2D32C006 E Base - May 2010

119971

12

**CURSOR ENGINES G-DRIVE** 

15

## MAINTENANCE PLANNING

## Recovery

To ensure optimised working conditions, in the following pages we are providing instructions for the overhaul control interventions, checks and setting operations that must be performed on the engine at due planned dates.

The frequency of the maintenance operations is just an indication since the use of the engine is the main characteristic to determine and evaluate replacements and checks.

It is not only allowed but recommended that the staff in charge of the maintenance should also carry out the necessary maintenance and controlling operations even if not being included in the ones listed here below but that may be suggested by common sense and by the specific conditions in which the engine is run.

## Inspection and/or maintenance interventions

Intervention type	Frequency (hours)
Engine	
Engine visual inspection	Daily
Check for water in the filter and prefilter	Daily
Engine oil change	Every 600 hours
Engine oil filter change	Every 600 hours
Fuel prefilter change	Every 300 hours
Fuel filter change	Every 300 hours
Changing the Blow-by filter	Every 600 hours
Check condition of water pump/alternator control belt	Every 1200 hours
Check-up of EDC system by diagnostics tool	-
Check valve lash and adjust, if required	Every 1200 hours
Dry air filter change and container cleaning	-

**NOTE** The maintenance operations are valid only if the setter fully complies with all the installation prescriptions provided by FPT.

**NOTE** Low temperature diesel EN 590 specifications distinguish different classes of diesel fuel, identifying the characteristics of those best suited to low temperatures. It is entirely up to the Oil companies to comply with these regulations, which foresee that fuels suited to the climactic and geographic conditions of the various Countries be distributed.

16

## OPERATIONS OUTSIDE THE PLAN

Daily checks

It is a good habit to execute, before engine start, a series of simple checks that might represent a valid warranty to avoid inconveniences, even serious, during engine running. Such checks are usually up to the operators and to the vehicle's drivers.

- Level controls and checks of any eventual leakage from the fuel, cooling and lubricating circuits.
- Notify the maintenance if any inconvenience is detected of if any filling is necessary.

After engine start and while engine is running, proceed with the following checks and controls:

- check presence of any eventual leakage from the fuel, cooling and lubricating circuits.
- Verify absence of noise or unusual rattle during engine working.
- Verify, using the vehicle devices, the prescribed pressure temperature and other parameters.
- Visual check of fumes (colour of exhaust emissions)
- Visual check of coolant in the expansion tank

**NOTE** Early air filter clogging is usually due to environmental conditions. For this reason, the filter should be changed if clogging is signalled by the related sensor, regardless of the prescriptions that shall be observed if no specific indications have been provided.

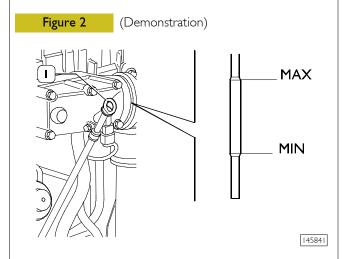
## Every year - Before winter

and possibly when a maintenance operation is carried out

Check the antifreeze percentage in the engine cooling water

## Every two year

and possibly when a maintenance operation is carried out


Change engine coolant

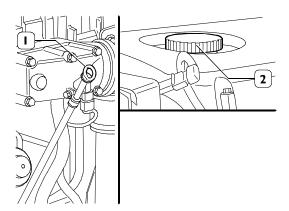
## **MAINTENANCE PROCEDURES Checks and controls**

## Engine oil level check

The check must be executed when the engine is disconnected and possibly cool.

The check can be made using the specially provided flexible rod(1).




Draw off the rod from its slot and check that the level is within the etched tags of minimum and maximum level.

Whether it should be difficult to make the evaluation, proceed cleaning the rod using a clean cloth with no rag grinding and put it back in its slot. Draw it off again and check the level.

In case the level results being close to the tag showing minimum level, provide filling lubrication of the engine's components.

Always be sure to add an oil with the same characteristics than that contained in the cup. Are not allowed mixing which would not provide proper lubrication of internal engine parts.

Figure 3 (Demonstration)



145842

Top up via the tappet cover cap (2). When filling, remove the dipstick (1) to facilitate the flow of oil.



The engine oil is highly polluting and harmful.

In case of contact with the skin, rinse well with water and detergent.



Adequately protect the skin and the eyes, operate in full compliance with safety regulations.

Disposal must be carried out properly, and in full compliance with the law and regulations in force.

## Check of fuel system

The check must be executed both when the engine disconnected and when it is running.

The check operation consists in examining the fuel pipelines running from the tank to the pre-filter (if provided in the specific equipment), to the filter, to the injection pump and to the injectors.

## Cooling system check

The check must be executed both when the engine disconnected and when it is running.

Check the pipes from the engine to radiator, and from the expansion tank and vice versa; check for any leaks and inspect the pipes, in particular near the connection clamps.

Verify that the radiator is clean, the correct working of the fan flywheels, the presence of any leakage from the connectors, from the manifold and from the radiating unit.



Due to the high temperatures achieved by the system, do not operate immediately after the engine's disconnection, but wait for the time deemed necessary for the cooling.

Protect the eyes and the skin from any eventual high pressure jet of cooling liquid.

The density of the cooling liquid must be checked any how every year before winter season and be replaced in any case every two year.



In case of new filling, proceed bleeding system, through the bleeds on the engine.

If bleeding of the system is not carried out, serious inconvenience might be caused to the engine due to the presence of air pockets in the engine's head.

## Lubricating system check

The check must be executed both when the engine disconnected and when it is running.

Verify the presence of any oil leakage or blow-by from the head, from the engine pan of from the heat exchanger.



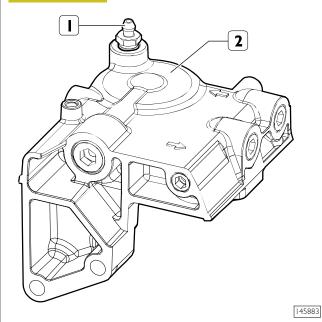
The engine oil is highly polluting and harmful.

In case of contact with the skin, rinse well with water and detergent.



Adequately protect the skin and the eyes, operate in full compliance with safety regulations.

Disposal must be carried out properly, and in full compliance with the law and regulations in force.


## Check for water in the fuel filter and prefilter

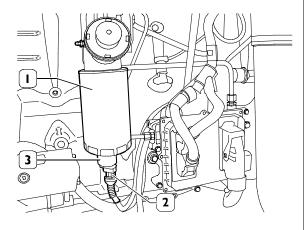


The components of the system can be damaged very quickly in presence of water or impurity within the fuel.

Take prompt action on the filter to drain off the water in the fuel circuit.

## Figure 4




The drain screw (I) for draining off any water that may be contained in the fuel is located on the fuel filter support (2).

CURSOR ENGINES G-DRIVE

Place a container underneath the filter and slightly loosen the screw. Drain the water eventually contained in the filter's bottom.

Lock the screw (I) as soon as fuel starts bleeding.

## Figure 5



145884

Unhook the electrical connection (2) from the pre-filter (1) and place a container under the pre-filter.

Drain off the water from the fuel pre-filter (1) using the drain (3) located beneath it.

During this process take care the fuel does not damage the sensor.

119975

## Engine oil change

## Figure 6

We recommend to carry out the oil drainage when the motor is hot.



Warning: We recommend to wear proper protections because of high motor service temperature.

The motor oil reaches very high temperature: you must always wear protection gloves.

- Place a proper container for the oil collecting under the pan connected with the drain plug (3).
- Unscrew the plug (3) and then take out the control dipsick (1) and the inserting plug (2) to ease the downflow of the lubrication oil.



The oil motor is very pollutant and harmful.

In case of contact with the skin, wash with much water and detergent.

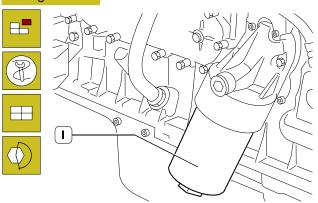


Protect properly skin and eyes: operate according to safety rules.

Dispose of the residual properly following the rules.

- After draining completely, screw on the plug (3) under the sump and tighten it to the prescribed torque.
- Add the specified quantity of recommended engine oil through the filler (2) of the tappets cover.

**NOTE** Use only the recommended oil or oil having the requested features for the corrrect motor functioning.


In case of topping up, don't mix oils having different features.

If you don't comply with theses rules, the service warranty is no more valid.

Check the level through the dipsick until when the filling is next to the maximum level notch indicated on the dipsick.

## Engine oil filter change

## Figure 7



119976

Drain the oil as described in the section "Changing the engine oil".

Remove the oil filter (1).

**NOTE** Warning: the oil filter contains inside a quantity of oil of about 1 kg.



Place properly a container for the liquid.

Warning avoid the contact of skin with the motor oil: in case of contact wash the skin with running water.

The motor oil is very pollutant: it must be disposed of according to the rules.

**NOTE** Before refitting the new cartridge, wet seal using engine oil.

Lock oil filter (1) by hand till contact to support and then lock by  $\frac{3}{4}$  of a rev. at prescribed tightening torque; pour oil in engine ad described in "Engine oil change" chapter.

20 SECTION 2 - G-DRIVE APPLICATION CURSOR ENGINES G-DRIVE

## Replace fuel tank prefilter



Disconnect electric connector (4). Unlock prefilter (1) and change it. Before refitting a new cartridge, wet seal with fuel oil or engine oil. Lock cartridge by hand till in contact with support, then lock it by 3/4 of a rev. at predefined tightening torque.

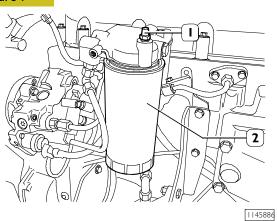


At change, filter cartridge must not be prefilled to prevent circulating dirt that could damage injector/pump system components.

Bleed air from the fuel as described below.

To bleed, pump with the hand pump (3) on the pre-filter (1) until fuel free of air flows from the loosened bleed screw (2).


Apply a transparent tube to the bleed screw (2) to facilitate the operation and above all to avoid that the bled fuel dangerously fouls the engine.


After operation, tighten the bleed screw (2).

Start the engine and allow it to run for a few minutes to expel any remaining air.

## Fuel filter change

## Figure 9







During this operation don't smoke and don't use free flames.

Avoid to breathe the vapors coming from filter.



After filters replacement the supply equipment deaeration must be carried out.

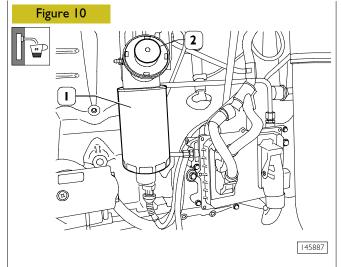
Unscrew the fuel filter cartridge (2).

Before fitting the new cartridge, wet seal with fuel or engine

Lock the new one by hand and carefully check that rubber seal and contact surface are clean and in perfect conditions.

Lock cartridge by hand till contact with support and then lock it for 3/4 of a rev. at prescribed tightening torque.



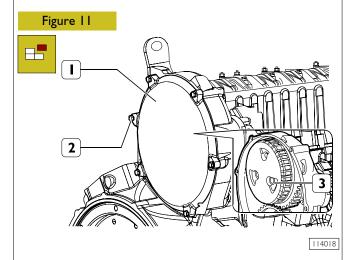

When replacing the filter cartridge (2) do **NOT** fill it.

This operation is banned to avoid impurities entering into the circuit, which would damage the injector/pump system components.

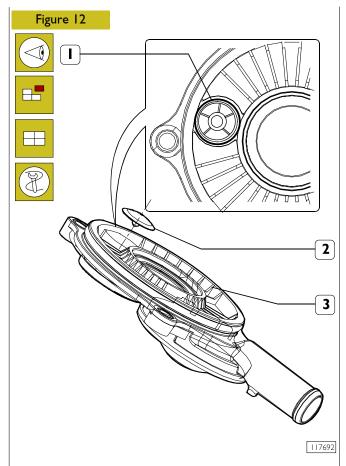
Bleed air from the fuel as described below.

## Fuel bleeding

Loosen the bleed screw (1) connecting the drainage by a transparent flexible hose to a suitable container.




With the hand pump (2) of the fuel pre-filter (1) pump until fuel completely free of air bubbles flows from the bleed screw.

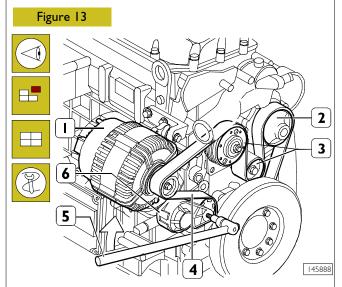

After the operation, tighten the bleed screw.

Start the engine and allow it to run at minimum for a few minutes to expel any remaining air.

## Changing the Blow-by filter



Unlock screws (2) and remove cover (1). Remove the centrifugal filter (3) underneath and replace it.




Install blow-by body (1) with related seal and lock screws (2) at required torque.

Install cover (3) and lock screws (4) at required torque.

22 SECTION 2 - G-DRIVE APPLICATION CURSOR ENGINES G-DRIVE

## Check of water pump/alternator control belt condition



Visually check that belt (4) is not worn out or broken; change it as described below, if required.

**NOTE** To be able to work on the engine belt you first need to remove the protective casing (if applicable) by unscrewing the screws.

Use appropriate equipment (5) on the belt tensioner (6) in the direction shown by the arrow and extract the belt (4) from the pulleys of the alternator (1), of the coolant pump (2) and from the idler pulleys (3).

Replace the worn belt with a new one.

Place the belt on the pulleys and the guide rollers.

Place the automatic tightener in order to key the belt in the functioning position.

Further adjustments are not required.

## Valve lash check a adjustment

For correct operation, follow instructions contained in related chapter in section 3 – Industrial Application.

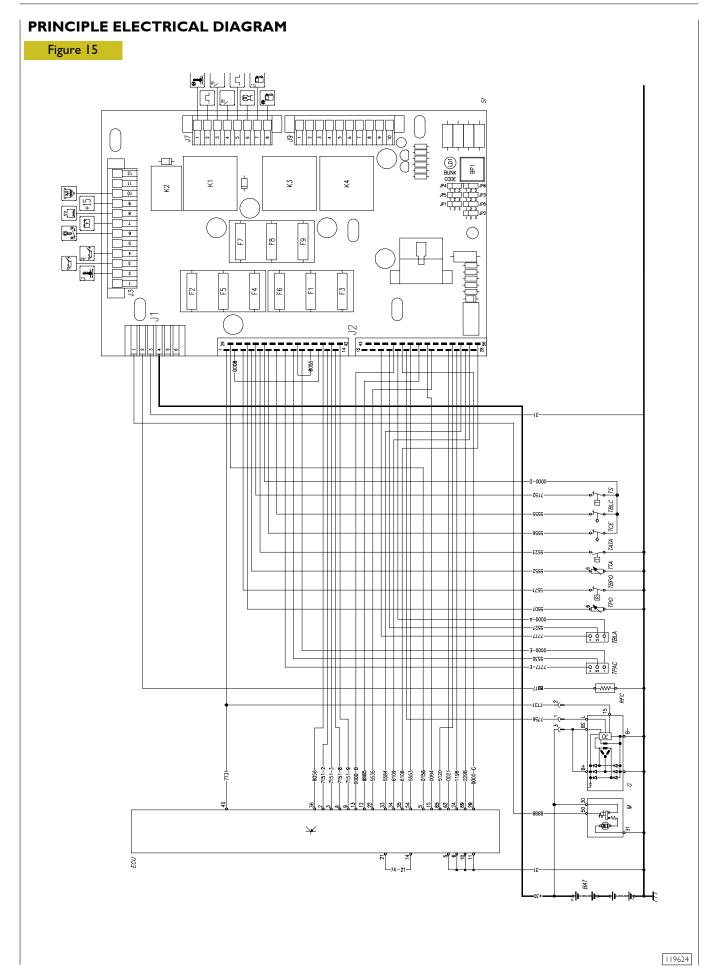
## Cleaning the air filter

# Figure 14

Only proceed with the engine stopped.

Remove the filter cover (3) after first unscrewing the locking handle (2).

130193


- Remove the external cartridge (1). During this operation, take care to ensure that no dust get into the sleeve.
- ☐ Check that there is no dirt. If there is, clean the filter element as indicated below.
- Blow dry compressed air through the filter element, from the inside outward (maximum pressure 200 kPa). Do not use detergents; do not use diesel.
- Never use tools to beat the filter element, and check its condition before replacing it.
- Replace the filter if any breakages or tears are found.
- ☐ Check that the gasket at its base is in good condition.
- Reassemble by repeating the above operations in reverse order.

**NOTE** Take care to ensure that the parts are reassembled correctly. Imperfect assembly might result in unfiltered air being sucked into the engine, causing serious damage.

## Air filter replacement

Refer to the instructions provided for air filter cleaning.

Change coolant	
Only proceed with the engine stopped and at a low temperature, so as to avoid the risk of burning.	
Provide suitable containers to ensure that no coolant is dispersed into the environment.	
Loosen the seal elements, remove the sleeves connecting the engine circuit to the heat exchanger and wait until it has emptied completely. When empty, repair the circuit making sure that the sleeves are perfectly sealed.	
Fill up the circuit.	
Refill the engine and the heat exchanger until complete top up.	
With the filler cap open, start the engine and keep it idling for nearly one minute. This phase facilitates the cooling liquid air bleed.	
☐ Stop the engine and top up again.	



## Key to components

BAT Starter battery 12V
M Starter motor

G Battery charger alternator
RFC Fuel filter heating resistor
TRFC Fuel filter heating thermostat
TPAC Water in the fuel filter transmitter
TBLA Low engine water level transmitter

**TPO** Engine oil pressure switch

TBPO Low engine oil level pressure switch
TTA Engine water temperature transmitter

TCE No fuel transmitter (option)

TBLC Float for fuel level

TS Engine water heater thermostat EDC Engine electronic control unit

TATA High engine water temperature thermostat SI Control panel - engine interface box

## Function symbols for the control panel



ENGINE WATER TEMPERATURE THERMOMETER



LOW ENGINE OIL PRESSURE VISUAL WARNING



ENGINE OIL PRESSURE GAUGE



STARTING THE ENGINE (+50)



NO BATTERY CHARGING VISUAL WARNING



LOW ENGINE WATER LEVEL VISUAL WARNING



CAPTIVE KEY POSITIVE (+15)



WATER IN THE FUEL FILTER VISUAL WARNING



HIGH ENGINE WATER TEMPERATURE VISUAL WARNING



CAN LINE

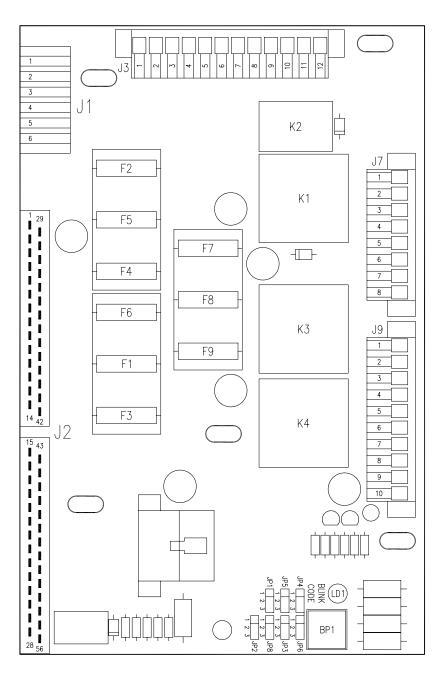


CONTROL PANEL POWER SUPPLY



**ENGINE PRE-HEATING** 




FUEL LEVEL VISUAL WARNING



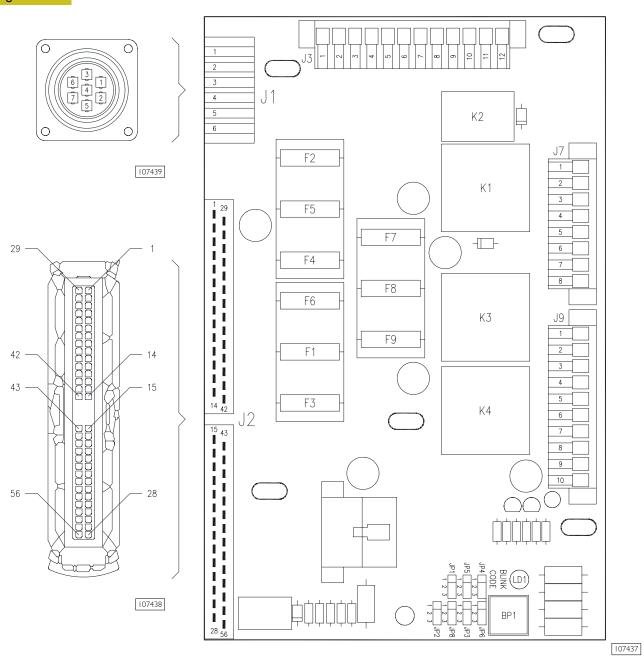
NO FUEL VISUAL WARNING (OPTION)

## ENGINE INTERFACE BOX Description

Figure 16



107437


## LIST OF COMPONENTS

K1. Power relay with key inserted (+15) - K2. Starting phase signal relay - K3. Starting relay - K4. Relay for pre-heating resistance enabling - JP1. Jumper to select frequency (jumper on 1-2= 60Hz - jumper on 2-3= 50Hz) - JP2. Jumper for operating mode selection (bond on 1-2= diagnosis - bond on 2-3= normal operation) - JP3. Jumper to select cold start signal connection (1-2= connected - 2-3= disconnected) - JP4. Jumper to select heat. function for cold starting (1-2= connected - 2-3= disconnected) - JP5. Jumper for Can Line selection (1-2= Can Line connected - 2-3= Can Line not connected) - JP6. Not used - JP8. Not used - BP1. Switch for blink-code signal request - LD1. LED signalling blink/code - F1. 10A fuse for starting engine - F2. 3A fuse for diagnostics - F3. 20A protection fuse for pre-heating resistance - F4. 30A fuse for electronic control unit - F5. 10A fuse for control panel - F6. 5A fuse for cut-in +15 ON ECU - F7. 20A protection fuse for fuel filter heater - F8. Not used - F9. Not used - J1. Connector for power connections - J2. Connector for interface with engine control unit - J3. Connector for interface with control panel - J7. Connector for interface with control panel.

Base - May 2010

## **Connectors**

## Figure 17



**CONNECTOR JI** on engine – control panel interface box for power supply (GECURSOR300E/350E/400E)

- To terminal 50 of starter motor
- 2 Supply from F3 for fuel filter heating resistance
- 3 Battery negative
- 4 Direct positive to battery
- 5 Spare
- 6 Spare

28 SECTION 2 - G-DRIVE APPLICATION CURSOR ENGINES G-DRIVE

## CONNECTOR J2 on engine – control panel interface box for EDC ECU connections

- 1 +15 from ignition key
- 2 12 jumper
- 3 Negative signal from oil low pressure pressure switch
- 4 Signal from water temperature sensor
- 5 Negative signal from water high temperature pressure switch
- 6 Signal from fuel zero level transmitter
- 7 Fuel low level signal
- 8 Supply of water presence in fuel sensor
- 9 Signal from water presence in fuel sensor
- 10 Ground of water presence in fuel sensor
- II Jumper with 37
- 12 Jumper with 2
- 13 Positive +30
- 14 Positive +30
- 17 Supply of water low level sensor
- 18 Signal from water low level sensor
- 19 Ground of water low level sensor
- 20 No recharge from alternator signal
- 22 Ground for diagnosis lamp
- 23 Positive signal for diagnosis lamp
- 25 Torque limiting resistance
- 27 Line K diagnosis EDC
- 29 Negative signal from EDC system diagnostic switch
- 31 Signal from oil pressure sensor
- 32 Negative signal from water heater thermostat
- 33 Ground
- 37 Jumper with 11
- 40 Positive signal for excitation of contactor of fuel filter heater
- 41 Positive +30
- 42 Positive +30
- 46 Ground
- 47 Ground
- 48 Positive for cold start lamp
- 49 Positive for excitation of pre-heating contactor
- 50 Pre-heating contactor ground
- Negative signal from EDC system diagnostic switch
- 54 Engine revs signal from EDC control unit
- 55 Line CAN L
- 56 Line CAN H

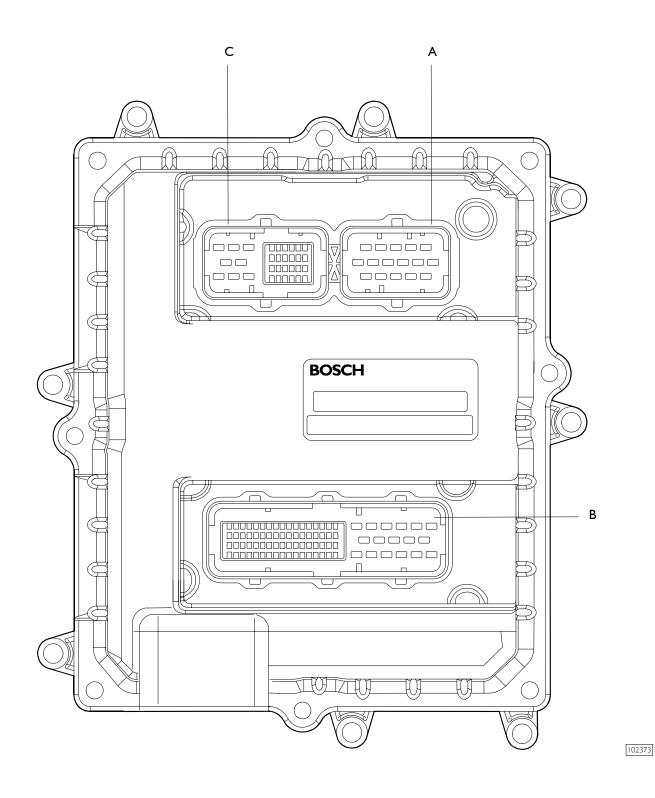
NOTA Pins I and 2 of EDC ECU are connected to battery negative

29

## CONNECTOR 13 inside the engine interface box for signals to control panel

- I Free
- 2 From the engine water temperature transmitter for signal to thermometer on control panel
- From the low engine oil pressure switch for visual warning on control panel
- 4 From engine oil pressure switch for signal to pressure gauge on control panel
- 5 Free
- 6 To the key switch (+50) on control panel
- 7 From the alternator for battery charging visual indicator on control panel
- 8 From the low engine water level transmitter for visual warning on control panel
- 9 +15
- 10 From the water in fuel filter transmitter for visual warning on control panel
- II Free
- 12 Free

## CONNECTOR J7 inside the engine interface box for signals to control panel

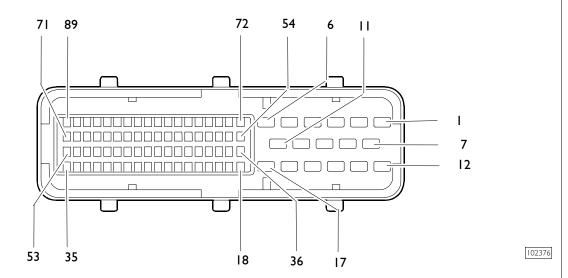

- From the engine coolant high temp, thermostat for visual signal on control panel
- 2 CAN line L to the control panel
- 3 Positive to power control panel
- 4 Negative to power control panel
- 5 CAN line H to the control panel
- 6 From the engine water heater thermostat to the control panel
- 7 From the fuel level transmitter for visual warning on control panel
- 8 From the no fuel transmitter (opt)

## CONNECTOR J9 inside the engine interface box

- Cold start signal (option) if jumper JP3 set on 1-2
- 2 Cold start signal (option) if jumper JP3 set on 1-2
- 3 Cold start heater relay (option) if jumper JP4 set on 1-2
- 4 Cold start heater relay (option) if jumper JP4 set on 1-2
- 5 Free
- 6 Free
- 7 Free
- 8 Free
- 9 Free
- 10 Free

## **EDC 7 UC31 ELECTRONIC CONTROL UNIT**

Figure 18




A. Electro-injector connector - B. Chassis connector - C. Sensor connector

## **EDC** control unit **PIN-OUT**

Chassis connector "B"

## Figure 19



ECU Pin	Cable	Function		
2	7151	Positive +30		
3	7151	Positive +30		
5	0150	Ground		
6	0150	Ground		
8	7151	Positive +30		
9	7151	Positive +30		
10	0150	Ground		
11	0150	Ground		
12	8885	Positive for excitation of pre-heating contactor		
13	0000	Ground		
21	-	Jumper with 74		
22	5535	Positive signal for diagnosis lamp		
29	0000	Ground		
30	0535	Ground for diagnosis lamp		
33	5584	Engine revs signal from EDC control unit		
34	6109	Line CAN L		
35	6108	Line CAN H		
36		Positive signal for excitation of contactor of fuel filter heater		
40	773 I	+15 from ignition key		
56	5553	Positive for cold start lamp		
62	002 I	Torque limiting resistance		
66	5120	Torque limiting resistance		
74	-	Jumper with 21		
75	0094	Pre-heating contactor ground		
85	0156	Negative signal from EDC system diagnostic switch		
89	2298	Line K - diagnosis EDC		