

PACKAGE STANDBY SYSTEMS

PSS20000LS PSS35000 PSS70000

INSTALLATION AND OPERATIONS MANUAL

Engine Generator Set

Automatic Transfer Switch

Read and understand all instructions in the manual before starting and operating the generator set.

USING THIS MANUAL

Congratulations on your choice of a Winco generator set. You have selected a high-quality, precision-engineered generator set designed and tested to give you years of satisfactory portable service.

To get the best performance from your new engine generator set, it is important that you carefully read and follow the operating instructions in this manual.

Should you experience a problem please follow the "Things To Check" near the end of this manual. The warranty listed in this manual describes what you can expect from WINCO should you need service assistance in the future

COPY YOUR MODEL AND SERIAL NUMBER HERE

No other WINCO generator has the same serial number as yours. It is important that you record the number and other vital information here. If you should ever need to contact us on this unit it will help us to respond to your needs faster.

MODEL	
SERIAL NUMBER	
PURCHASE DATE	
DEALER	

TABLE OF CONTENTS

INTRODUCTION	i
GUIDE TO PRODUCT SAFETY	1
BASICINFORMATION	2
Description	2
Specification Table	3
PREPARING THE UNIT	3
Unpacking the unit	3
ENGINE GENERATOR INSTALLATION	4
Installation	4
Fuel Line Installation	4
Fuel Pressure Tables	5
Lubrication	5
Coolant	5
Battery Installation	6
TRANSFER SWITCH INSTALLATION	6
AC Electrical Connections	7
DC Electrical Connections	8
BLOCK HEATER WIRING	8
INITIAL START-UP	8
EXERCISOR CLOCK	9
TROUBLESHOOTING INFORMATION	10
LP/NG ADJUSTMENT	11
FUEL TYPE CONVERSION	11
CONTROL PANEL LAYOUT	13
AC WIRING - THREE PHASE	
277/480 Volt	14
120/208 Volt	14
120/240 Volt	15
AC WIRING - SINGLE PHASE	
120/240 Volt	15
VOLTAGE REGULATOR WIRING	16
DC SCHEMATIC - WIRING DIAGRAM	
PSS35000/A	17
PSS70000	18
PSS35000/B & PSS20LS/A	19
PSS35000/C	20
PSS20LS/B	21
PSS35000/D	22
12 MONTH WARRANTY	24

PROPER USE AND INSTALLATION

You must be sure your new engine generator set is:

- * Properly serviced before starting
- * Operated in a well ventilated area
- Properly exhausted and gases safely dispersed
- * Wired by a qualified electrician
- * Operated only for its designed purposes
- * Used only by operators who understand its operation
- * Properly maintained

SAFETY INFORMATION

This engine generator set has been designed and manufactured to allow safe, reliable performance. Poor maintenance, improper or careless use can result in potential deadly hazards; from electrical shock, exhaust gas asphyxiation, or fire. Please read all safety instructions carefully before installation or use. Keep these instructions handy for future reference. Take special note and follow all warnings on the unit labels and in the manuals.

ANSI SAFETY DEFINITIONS

DANGER:

DANGER indicates an imminently hazardous situation which, if not avoided, **will** result in death or serious injury. This signal word is to be limited to the most extreme situations.

WARNING:

WARNING indicates a potentially hazardous situation which, if not avoided, **could** result in death or serious injury.

CAUTION:

CAUTION indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

NOTE:

CAUTION is also used on the unit labels and in this manual to indicate a situation that could result in serious damage or destruction of the equipment and possible personal injury.

- ELECTRIC SHOCK The output voltage present in this equipment can cause a fatal electric shock. This equipment must be operated by a responsible person.
 - a. Do not allow anyone to operate the generator without proper instruction.
 - b. Guard against electric shock.
 - c. Avoid contact with live terminals or receptacles.
 - d. Use extreme care if operating this unit in rain or snow.
 - e. Use only three-prong grounded receptacles and extension cords.
 - f. Be sure the unit is properly grounded to an external ground rod driven into the earth.

- 2. **FIRE HAZARD -** Natural gas and L.P. present a hazard of possible explosion and/or fire.
 - a. Do not smoke or use open flame near the generator set.
 - b. Keep a fire extinguisher nearby and know its proper use. Fire extinguishers rated ABC by NFPA are appropriate.
- 3. **DEADLY EXHAUST GAS** Exhaust fumes from any gasoline engine contain carbon monoxide, an invisible, odorless and deadly gas that must be mixed with fresh air.
 - a. Operate only in well ventilated areas.
 - b. Never operate indoors without adequate ventilation and fresh air.
 - c. Never operate the unit in such a way as to allow exhaust gases to seep back into closed rooms (i.e. through windows, walls or floors).
- 4. NOISE HAZARD Excessive noise is not only tiring, but continual exposure can lead to loss of hearing.
 - a. Use hearing protection equipment when working around this equipment for long periods of time.
 - b. Keep your neighbors in mind when permanently installing this equipment.
- 5. **CLEANLINESS -** Keep the generator and surrounding area clean.
 - a. Remove all grease, ice, snow or materials that create slippery conditions around the unit.
 - b. Remove any rags or other material that could create potential fire hazards.
 - c. Carefully wipe up any gas or oil spills before starting the unit.
 - d. Never allow leaves or other flammable material to build up around the engine exhaust area.
- 6. SERVICING EQUIPMENT All service, including the installation or replacement of service parts, should be performed only by a qualified technician.
 - a. Use only factory approved repair parts.
 - b. Do not work on this equipment when fatigued.
 - c. Never remove the protective guards, cover, or receptacle panels while the engine is running.
 - d. Use extreme caution when working on electrical compo nents. High output voltages from this equipment can cause serious injury or death.
 - e. Always avoid hot mufflers, exhaust manifolds, and engine parts. They all can cause severe burns instantly.
 - f. Installing a generator set is not a "do-it-yourself" project. Consult a qualified, licensed electrician or contractor. The installation must comply with all national, state, and local codes.

TESTING POLICY:

Before any generator is shipped from the factory, it is fully checked for performance. The generator is loaded to its full capacity, and the voltage, current, and frequency are carefully checked.

Rated output of generators is based on engineering tests of typical units, and is subject to, and limited by, the temperature, altitude, fuel, and other conditions specified by the manufacturer of the applicable engines.

INTRODUCTION AND DESCRIPTION

The package standby engine-generator set includes all items necessary for a completely automatic standby power system as standard equipment. The entire package is then tested to insure proper operation of all components and the total systems performance and reliability.

DESCRIPTION

This packaged power system is designed to automatically provide standby power to unattended loads during electrical outages. Upon an interruption of normal electrical service this packaged power systems electrical control circuits will automatically start the engine. The generator will produce electrical power and the Automatic Transfer Switch (A.T.S.) will automatically transfer the electrical loads to the engine-generator set. Upon restoration of normal electrical service the emergency transfer switch will sense return of the normal commercial power. The Automatic Transfer Switch will retransfer the load back to normal commercial power source. The engine control circuits will begin a 3 minute cool-down cycle, after which the fuel supply will be shut off and the engine ignition system disabled.

These packaged power systems consist of two major components:

1) AUTOMATIC TRANSFER SWITCH

The table below shows the different Automatic Switch sizes shipped with each unit.

		CONTACTOR RATING	
MODEL	VOLTAGE	LINE	GENERATOR
PSS20000LS-3	120/240	225	100
PSS20000LS-17	120/240	225	100
PSS20000LS-4	120/208	225	100
PSS20000LS-18	120/240	100	100
PSS35000-3	120/240	225	225
PSS35000-4	120/208	225	225
PSS35000-17	120/240	225	225
PSS35000-18	277/480	100	100
PSS70000-3	120/240	400	320
PSS70000-4	120/208	400	320
PSS70000-17	120/240	400	320
PSS70000-18	277/480	225	225

These Automatic Transfer Switchs (A.T.S.) are wall mount switches designed for inside installation. The A.T.S. consists of

a line side contactor and a generator side contactor. The contactors are both electrically and mechanically interlocked. An automatic taper battery trickle charger (40 MA max) and a seven day electronic exerciser clock are installed in the A.T.S. as standard equipment. The A.T.S. also contains the power failure sensing circuitry necessary to send a start/stop signal to the engine generator set.

2) ENGINE/GENERATOR

PSS20000LS- The engine generator set consists of a Ford Industrial, four cylinder, liquid cooled engine equipped to run on L.P./N.G. fuel. The engine operates at 1800 rpm and frequency regulation is maintained by the electronic governor within .5 cycles varation, from no load to rated load. The 20,000 watt (20kW) generator is a single bearing, direct drive, rotating field design. The generator is connected to the engine flywheel via flexible drive disks. The engine generator is mounted in a drip proof enclosure for outside installation. Connection boxes are provided to all customer connections (both AC output and DC control). A customer supplied 12 Volt, 650 CCA (BCI group 24) battery is required to complete the installation. Engine operation is controlled by an Electronic Engine Control Module (E.C.M.) mounted in the engine generator enclosure. The E.C.M. is equipped standard with a 10 second start delay. 3 minute cool down delay and cycle cranking, featuring 5 cycles of 12 seconds on/12 seconds off.

PSS35000 - The engine generator set consists of a Ford Industrial, four cylinder, liquid cooled engine equipped to run on L.P./ N.G. fuel. The engine operates at 3600 rpm and frequency regulation is maintained by the engine governor within .5 cycles variation, no load to rated load. The 35,000 watt (35kW) generator is a single bearing, direct drive, rotating field design. The generator is connected to the engine flywheel via flexible drive disks. The engine generator is mounted in a drip proof enclosure for outside installation. Connection boxes are provided to all customer connections (both AC output and DC control). A customer supplied 12 Volt, 650 CCA (BCI group 24) battery is required to complete the installation. Engine operation is controlled by an Electronic Engine Control Module (E.C.M.) mounted in the engine generator enclosure. The E.C.M. is equipped standard with a 10 second start delay, 3 minute cool down delay and cycle cranking, featuring 5 cycles of 12 seconds on/12 seconds off.

PSS70000 - The engine generator set consists of a Ford Industrial, eight cylinder, liquid cooled engine equipped to run on L.P./N.G. fuel. The engine operates at 1800 rpm and frequency regulation is maintained by the engine governor within .5 cycles variation, from no load to rated load. The 70,000 watt (70kW) generator is a single bearing, direct drive, rotating field design. The generator is connected to the engine flywheel via flexible drive disks. The engine generator is mounted in a drip proof enclosure for outside installation. Connection boxes are provided to all customer connections (both AC output and DC control). A customer supplied 12 Volt, 650 CCA (BCI group 24) battery is required to complete the installation. Engine operation is controlled by an Electronic Engine Control Module (E.C.M.) mounted in the engine generator enclosure. The E.C.M. is equipped standard with a 10 second start delay, 3 minute cool down delay and cycle cranking, featuring 5 cycles of 12 seconds on/12 seconds off.

** NOTICE **

These unit will automatically transfer if a power outage occurs while running in an exercise mode.

SPECIFICATIONS

GENERATOR

MODEL	WATTS	VOLTS	AMP	ΗZ	PH	RPM
PSS20000LS	20,000	120/240	83	60	1	1800
PSS20000LS-4	20,000	120/208	69	60	3	1800
PSS20000LS-17	20,000	120/240	60	60	3	1800
PSS20000LS-18	20,000	277/480	30	60	3	1800
PSS35000	30,000	120/240	125	60	1	3600
PSS35000-4	35,000	120/208	121	60	3	3600
PSS35000-17	35,000	120/240	105	60	3	3600
PSS35000-18	35,000	277/480	53	60	3	3600
PSS70000	65,000	120/240	271	60	1	1800
PSS70000-4	70,000	120/208	243	60	3	1800
PSS70000-17	70,000	120/240	210	60	3	1800
PSS70000-18	70,000	277/480	105	60	3	1800
**					0 = 0 (

*Derate 10% for Natural Gas operation. Derate 3.5% per 1000 feet elevation above sea level.

FUEL CONSUMPTION

N	G (1,000	BTU/CU FT)	L.P. V	APOR (2,5	520 BTU	/CU FT)
MODEL	CF/HR	BTU/HR	#/HR	GAL/HR	CF/HR	BTU/HR
PSS20000	365	365,00	13.7	3.3	117	295,200
PSS35000	540	540,000	28.5	6.7	243	612,000
PSS70000	940	940,000	48.9	11.5	417	1,005,222

L.P. TANK SIZING

Minimum required L.P. Tank size for L.P. Vapor withdrawal operating at various outside temperatures given in degrees Fahrenheit (Celsius)

TANK TEMPERATURE

MODEL	60 F(16 C)	30 F(0 C)	0 F(-18 C)	-20 F(-29 C)	
PSS20000	100 Gal	150 Gal	500 Gal*	1500 Gal*	
PSS35000	160 Gal.	300 Gal.	1000 Gal.*	2000 Gal.*	
PSS70000	500 Gal.	1000 Gal.	2500 Gal.*	9000 Gal.*	
*Recommend liquid withdrawal at these temperatures.					

ENGINE SPECIFICATIONS:

Refer to engine operating and maintenance instructions

** NOTICE **

Regarding Engines - This manual covers the generator portion of these units. See the separate engine instruction manual for engine-related problems, detailed engine information and engine warranty.

** CAUTION **

EQUIPMENT DAMAGE - Be sure to check the engine oil level frequently as specified in the engine manual.

The engine manufacturer has established an excellent world-wide engine service organization; engine service is available from a nearby authorized dealer or distributor; check the yellow pages of the telephone directory under "engines," or ask the dealer from whom you purchased the power plant.

The rated power of each engine-generator is limited by the temperature, altitude and all other ambient conditions specified by the engine manufacturer. Engine power will decrease 3-1/2% for each 1000 ft. above sea level, and will decrease an additional 1% for each 10 degrees Fahrenheit above 60 degrees Fahrenheit.

UNPACKING INSTRUCTIONS

** NOTICE **

When unpacking the generator set, be sure to inspect it carefully for freight loss or damage. If loss or damage is noted at the time of delivery, require that the person making the delivery make note of the loss or damage on the freight bill, or affix his signature under the consigner's memo of the loss or damage. Contact the carrier for claim procedures.

When loss or damage is noted after delivery, segregate the damaged material, and contact the carrier for claim procedures.

"Concealed Damage" is understood to mean damage to the contents of a package which is not in evidence at the time of delivery by the carrier, but which is discovered later. The carrier or carriers are responsible for merchandise lost or damaged in transit. The title to goods rests with the consignee when generators are shipped fob factory, and only the consignee can legally file a claim.

**** CAUTION ****

EQUIPMENT DAMAGE - The **PSS20000LS, PSS35000** and the **PSS70000 are** shipped with oil, and a 50/50 mix of coolant. Be sure to check all fluid levels before operating. See engine manufacturer's instruction manual for recommended oil requirements before initial starting.

UNPACKING:

1. Carefully remove the carton.

2. After inspecting the engine-generator for external physical damage, check for the following items packed inside the carton.

- a. Owner's manual, wiring diagram, and parts list.
- b. Engine manufacturer's instruction manual.
- 3. Remove main frame hold down bolts, (4).
- 4. Unit can now be lifted from shipping rails.

INSTALLATION

General Information

***** WARNING ****

PERSONAL INJURY - Before proceeding with the installation, be sure the operation selector switch is in the "stop" position.

These engine/generator sets are available as a skid mounted unit for indoor installation or a skid mounted unit with a standard or accoustical housing for outdoor installation. All versions of these units must be bolted solidly to a concrete pad. The transfer switch is mounted next to your distribution panel inside the building. Consult a qualified, licensed electrician or contractor to install and wire the transfer switch. The installation must comply with all national, state, and local codes.

***** CAUTION ****

EQUIPMENT DAMAGE - These units must be mounted on a solid concrete pad to prevent air from exiting under the unit. Allowing air to exit under the unit may cause the unit to overheat from lack of proper air flow..

Before beginning the installation process recheck the rating of the generator set and it's transfer switch rating. Be certain they can handle the intended load and are compatible with the entrance voltage, phase and current ratings. Plans for installation should be prepared with proper attention to mechanical and electrical engineering detail to assure a satisfactory system installation. The information in this manual is offered only as a guide to finalizing your installation plans. For full service switching the A.T.S. should have a fuseable disconnect installed before the switch to protect the contacts.

ENGINE GENERATOR SET MOUNTING

The unit's main frame should be bolted solidly to a 4 to 6 inch thick cement pad. The engine-generator is mounted on a subframe which is attacted with special shock mounts on the main frame. This allows the engine-generator free movement without affecting the control panel which is mounted on the main frame.

Do not shock mount the main frame. Engine vibration will be transmitted to the control panel causing erroneous start/stop cycles and premature control failure.

The unit should be mounted to allow for ample working room around it. A general rule to follow is three (3) feet clearance on all sides.

FUEL INSTALLATION

The fuel supply should be as close as possible to the engine. This will reduce the installation cost of fuel runs. The information in this manual is offered to assist you in providing the proper fuel for your engine. However, this information is only provided to

inform you of the engine's requirements and assist in making you aware of the decisions you must make. In no case should the instructions or information provided be interpreted to conflict with any local, state or national codes. If in doubt, always consult your local fire marshal or gas supplier.

***** WARNING ****

FIRE HAZARD - All fuel runs should be installed by a licensed fuel supplier.

Connect the fuel supply to the inlet of the fuel solenoid (see table for recommended line size). The pressure at the secondary demand regulator must be four to six ounces psi (per square inch) or 7 to 11 inches W.C. (Water column) for vapor withdrawal units. On units equipped with liquid withdrawal fuel systems full tank pressure is plumbed to the fuel lock strainer mounted on the generator rails. The fuel convertor mounted on the unit will handle both vaporization of the fuel and pressure reduction.

INSTALLING THE FUEL LINE

** NOTICE **

The engine generator sets are properly adjusted before they leave the factory. A tag is attached to the unit that specifies the fuel, natural gas (NG) or propane vapor (LP) that the unit was set up and tested on. A slight adjustment may be necessary on NG depending on local BTU content. This adjustment will be discussed later.

Line Size (vapor system)

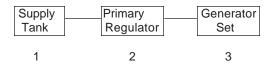
Unit location will determine the size of fuel line that is required to supply the engine with a constant fuel pressure. Refer to the tables below for fuel line size, fuel consumption and recommended tank size. For distances of 50 feet and over, a two regulator fuel system is recommended. This is accomplished by installing a primary regulator at the tank which will reduce the tank pressure down to 10 to 15 lbs. A secondary regulator is installed to further reduce the fuel pressure to the required six (6) oz operating pressure. This secondary regulator must be at least 10 feet from the engine generator set. Any closer installation will require a larger line be installed to provide a fuel reservoir. If this is not done, the demand regulator on the unit and the pressure regulator in the fuel line will interfere with each other. When this two (2) stage regulator system is used, a fuel line size of 3/4 to 1 inch is generally adequate for distances up to 300 feet from the primary to the secondary regulator. (Consult your local fuel supplier for your exact requirements). The appropriate line size from the table below is then installed from the second regulator to the generator set.

***	*****	
*****	WARNING	****
***	*****	

PERSONAL DANGER - Do not use galvanized pipe in fuel line runs. The galvanized coating can become eroded and flake off, causing possible obstructions in the regulator or fuel valve. The results could range from inoperative engine start to hazardous fuel leaks. Size of pipe normally required for generators operating on NATURAL/LP gas.

	up to 25 feet*	over 25 feet*	
PSS20000	1" pipe	not recommended	
PSS35000	1" pipe	use a	
PSS70000	2" pipe	two regulator system	
* Allow an a	dditional 3 feet	for each standard elbow.	Do not
use 'street ells'	(restrictive)*		

**** CAUTION ****


EQUIPMENT DAMAGE - Be careful when sealing gas joints. Excessive sealing compound can be drawn into the solenoid, regulator or carburetor causing an engine malfunction.

FUEL PRESSURE(vapor system)

Correct fuel pressure cannot be stressed enough. The most common cause for inoperative systems is an inadequate or incorrect fuel pressure. Performance of the engine is in direct relation to the correctness of the fuel system. Shown below is a block diagram of a typical L.P. or N.G. Installation.

TWO(2) REGULATOR FUEL SYSTEM

SINGLE REGULATOR FUEL SYSTEM

Reference numbers 1 through 3 in the block diagrams above are fuel lines supplied by customer.

Reference number 4 is the engine generator set.

Below is a table of the fuel pressure reading at each reference in the system.

Fuel Pressure Table

Single Regulator (L.P. Vapor only)

	1	2	3
UNIT OFF	TANKPSI	7-11 in	7-11 in
		4-6 oz	4-6 oz
STARTING	TANK PSI	7-11 in	7-11 in
		4-6 oz	4-6 oz
NO LOAD	TANKPSI	7-11 in	7-11 in
		4-6 oz	4-6 oz
FULL LOAD	TANK PSI	7-11 in	7-11 in
		4-6 oz	4-6 oz

Two (2) Regulator System (L.P. Vapor only)

	1	2	3	4
UNIT OFF	TANK PSI	10-15 lbs	7-11 in	7-11 in
			4-6 oz	4-6oz
STARTING	TANK PSI	10-15 lbs	7-11 in	7-11 in
			4-6 oz	4-6 oz
NO LOAD	TANKPSI	10-15 lbs	7-11 in	7-11 in
			4-6 oz	4-6 oz
FULL LOAD	TANKPSI	10-15 lbs	7-11 in	7-11 in
			4-6 oz	4-6 oz

Natural Gas

	1	3	4
UNIT OFF	LINE PSI	7-11 in	7-11 in
		4-6 oz	4-6 oz
STARTING	LINE PSI	7-11 in	7-11 in
		4-6 oz	4-6 oz
NO LOAD	LINE PSI	7-11 in	7-11 in
		4-6 oz	4-6 oz
FULL LOAD	LINE PSI	7-11 in.	7-11 in
		4-6 oz	4-6 oz

Notice the preceding tables give two (2) different units of measuring fuel pressure. The first is with a pressure gauge calibrated in ounces per square inch. The second and most accurate is the use of a simple water manometer. A manometer is calibrated in inches of water column.

LP LIQUID WITHDRAWAL SYSTEMS

When installing a unit equipped the LP liquid withdrawal a primary regulator is not required on the supply tank. The supply line is connected to a liquid withdrawal valve on the supply tank and ran directly to the fuellock strainer mounted on the engine generator set. Normally a 3/8 inch copper line is acceptable for this type of fuel installation. You must be sure that the valve you have connected to on the supply tank is in fact a liquid supply valve and has a drop tube inside the tank that is pulling fuel from the bottom of the supply tank. Before starting the unit you must confirm that you have a good liquid supply at the unit. **Engine** generators sets equipped for liquid withdrawal will not run properly when supplied with high pressure vapor fuel.

LUBRICATION

Before starting the engine, check the oil level in the crankcase. If it is low, refill to the full mark with the proper weight/grade of oil as recommended by the engine manufacturer's maintenance instructions. The necessity of using the correct oil, and keeping the crankcase full cannot be over emphasized. Failure to use the proper oil and keep the crankcase properly filled will cause excessive engine wear and shorten its useful life.

COOLANT

Before starting the engine, check the coolant level in radiator. If it is low, refill as specified in the engine manufacturer's maintenance instructions. The radiator should be filled to about 1 inch below the filler neck.For additonal information on engine coolant requirements see engine manufacturer's maintenance instructions.

INSTALLING THE BATTERY

**** CAUTION ****

EQUIPMENT DAMAGE - In the following battery installation procedure, check to be sure the selector switch remains in the "stop" position.

A customer supplied twelve-volt BCI group 24 battery rated 650 CCA (minimum) is required to complete the installation. Install the highest CCA rated battery available for best cold weather starting performance.

****WARNING*****

EQUIPMENT DAMAGE - Always connect the positive battery cable first and the negative cable last. When disconnecting a battery always disconnect the negative cable first and the positive cable last. Failure to follow these steps can cause arcing at the battery post which can cause damage to both the engine and the engine control module.

Observe polarities: Connect the positive (+) battery terminal to the (+) cable from the control panel; the negative (-) battery terminal is connected to the negative cable (ground) from the engine generator assembly.

NOTE: Alway make sure that a new battery is fully charged before installing it on a generator set. Failure to do so can cause damage to the engine control module in the generator set.

All connections must be clean and tight. Check the electrolyte (fluid) in the battery periodically to be sure it is above the plates. Never allow the battery to remain in a discharged condition.

A self tapering trickle charger, producing up to 40 MA is built into the Automatic Transfer Switch panel to keep the battery in top condition during standby periods. A small green light on the Transfer Switch cover is illuminated to indicate the proper operation of the charger. Since the charger has an automatic charge regulation circuit, the charger has no control knob and requires no adjustment.

** NOTICE **

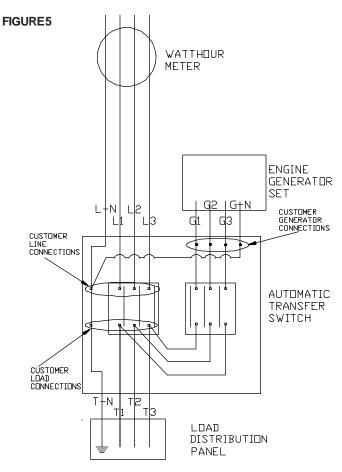
The trickle charger is not intended to recharge a battery which has become completely discharged. It is designed to produce just enough current to maintain a fully charged battery.

MOUNTING THE AUTOMATIC TRANSFER SWITCH (A.T.S.)

The automatic transfer switch connects the load (lights, furnace, outlets, etc.) to the normal power line. When normal power fails, the A.T.S. starts the engine generator set, disconnects the power line and then connects the load to the standby generator set. When normal power is restored, the automatic switch retransfers the electrical load to the normal service and stops the engine. The A.T.S. panel should be mounted as close to the distribution panel as possible.

***** WARNING *****

FIRE HAZARD - All wiring must be done by a licensed electrician, and must conform to the national electrical code and comply with all state and local codes and regulations. Check with the authorities before proceeding!


PSS20000LS - The Automatic Transfer Switch shipped with the PSS20000LS system has a 225 Amp line side contactor (the 277/ 480 volt transfer switch has 100 Amp contactor instead of the 225 Amp) installed to handle your normal power needs and a 100 Amp generator side contactor to handle the emergency generator output. Before installing the A.T.S. you must first ensure that the 225 Amp line side contactor will be sufficient to handle your complete service. See Figure 5. (i.e. the main line breaker must not be larger than 225 Amps) If you have 250, 300 Amp or larger system, you will not be able to transfer the complete electrical system. In this case it will be necessary to install a secondary emergency distribution panel.

PSS35000 - The Automatic Transfer Switch shipped with the PSS35000 system has a 225 Amp line side contactor (the 277/ 480 volt transfer switch has 100 Amp contactor instead of the 225 Amp) installed to handle your normal power needs and a 225 Amp generator side contactor to handle the emergency generator output. Before installing the A.T.S. you must first ensure that the 225 Amp line side contactor will be sufficient to handle your complete service. See Figure 5. (i.e. the main line breaker must not be larger than 225 Amps) If you have 250, 300 Amp or larger system, you will not be able to transfer the complete electrical system. In this case it will be necessary to install a secondary emergency distribution panel.

PSS70000 - The Automatic Transfer Switch shipped with the PSS70000 system has a 400 Amp line side contactor (the 277/ 480 volt transfer switch has 225 Amp contactor instead of the 400 Amp) installed to handle your normal power needs and a 400 Amp generator side contactor to handle the emergency generator output. Before installing the A.T.S. you must first ensure that the 400 Amp line side contactor will be sufficient to handle your complete service. See Figure 5. (i.e. the main line breaker must not be larger than 400 Amps). If you have a larger main line breaker, you will not be able to transfer the complete electrical system. In this case it will be necessary to install a secondary emergency distribution panel.

***** WARNING *****

PERSONAL INJURY - Be certain the operation selector switch on the front of the A.T.S. Control is in the "stop" position and the main power switch "off". For your own protection, verify these important safety precautions yourself with reliable instruments before proceeding.

Three phase unit shown, for single phase wiring disregard L-2, T-2, G-2.

A.C. ELECTRICAL CONNECTIONS Single Phase

The standby generator terminals in the A.T.S are marked "GENERATOR - G1, G-N, G3". The "hot" leads G1 and G3 wire directly to the top lugs on the generator side contactor, terminals G1 and G3. The G-N connection is made to the lug on the standoff just to the right of the generator side contactor.

The line terminals in the A.T.S. are marked "LINE - L1, L-N, L3". The "hot" leads L1 and L3 will wire directly to the top lugs on the line side contactor. The L-N connection will be made on the stand-off just to the left of the line side contactor.

The load terminals in the A.T.S. are marked "LOAD - T1, T-N, T3". The "hot" leads T1 and T3 will wire directly to the lower lugs on the line side contactor. Jumper leads have already been installed between the lower lugs on the line side and the lower lugs on the generator side contactors. The T-N connection will be made on the stand-off just to the left of the contactor.

An equipment grounding lug is provided just above the T-N connection for your use in grounding the transfer switch..

Three Phase

The standby generator terminals in the A.T.S. are marked "GENERATOR - G1, G2, G3 and G-N. The "hot" leads G1 G2 and G3 wire directly to the generator side contactor, terminals G1, G2 and G3. The G-N connection is made to the lug on the standoff just to the right of the generator side contactor.

The line terminals in the A.T.S. are marked "LINE - L1, L2, L3 and L-N". The "hot" leads L1, L2 and L3 will wire directly to the top lugs on the line side contactor. The L-N connection will be made on the stand-off just to the left of the contactor.

The load terminals in the A.T.S. are marked "LOAD - T1, T2, T3 and T-N". The "hot" leads T1, T2 and T3 will wire directly to the lower lugs on the line side contactor. Jumper leads have already been installed between the lower lugs on the line side and the lower lugs on the generator side contactors. The T-N connection will be made on the stand-off just to the left of the contactor.

An equipment grounding lug is provided just above the T-N connection for your use in grounding the transfer switch.

All the neutral leads (G-N, L-N and T-N) must be carried through the A.T.S. These leads are all bonded together within the A.T.S. and are bonded to GROUND at one common point. If your system requires an isolated neutral, this neutral to ground bond can be isolated by removing the copper strap located between the LINE terminal L-N and the ground lug in the panel. This action, along with lifting the Neutral to Ground bond in the generator connection cabinet, will effectively change this unit to a fully isolated neutral system.

The generator output leads in the generator connection box follow the same marking pattern. i.e. G1, G-N and G3 on the single phase and G1, G2, G3 and G-N on the three phase units.

****** WARNING *****

EQUUIPMENT DAMAGE - When installing a Three Phase 240 volt system be sure you know which lead is the high voltage "wild" leg (208Volt line to neutral). The generator normally carries the high voltage on the G3 lead.

The load current carrying wires (L) and (T) must be sized to handle the maximum load current without excessive voltage drop. By code, the wire must be heavy enough to handle the full current rating of the main line circuit-breaker (or fuse) in the entrance (or sub-panel) protecting the contactor switch.

A fused disconnect (circuit breaker or fuses) must be installed between the engine generator and the A.T.S. panel. See the table below for disconnect sizing. Failure to install a proper fused disconnect will void any warranty on the generator end. All wiring from the engine-generator to the transfer switch must be of sufficient size to handle the appropriate fused disconnect amperage.

All wires should be installed in rigid or flexible conduit. (Knockouts are provided in the control box) Because of the many different types of service, feeder, and distribution equipment, no specific wiring instructions can be provided. It is recommended that only copper wire be used. In all cases it is essential that while the load is connected to the generator, there can be absolutely no feedback from the generator to the power line or the power line to the generator. When properly installed, the normal A.T.S. Control and safety systems will eliminate all paths for feedback.

To wire the automatic transfer switch into the existing wiring, first determine which circuits will be on the emergency load circuit. If the entire load is to be transferred, the transfer switch can be wired in directly after the watt-hour meter or main entrance. Providing the service entrance ampere rating is within the transfer switch's rated capability.

If only specific circuits are to be powered under emergency power failure conditions, an additional distribution panel designated "emergency distribution panel" must be installed.

All selected emergency circuits are removed from main distribution panels and reinstalled in the emergency distribution panel. Suggested circuits: freezer, refrigerator, furnace, emergency lights, sump pump, emergency outlet circuits, etc. Total running load must not exceed generator rating.

D.C. ELECTRICAL INTERCONNECTION

PSS20000LS, PSS35000 and PSS70000

Three control wires are required between the A.T.S. panel and the generator control terminal box. Depending on the distance, 14 to 16 gauge stranded wire should be used. These wires will be labeled "Bat +", "Bat -", and "Start".

***** WARNING *****

Be sure both the mode switch on the Engine Generator and the mode switch in the Automatic Transfer Switch are in the "OFF" postition before you make any DC interconnections.

The connections to the engine control will be made in a 2" X 4" connection box mounted on the right hand side of the generator control box . The wiring from the engine control has already been stubbed into this connection box for your convenience. The wires are labeled as follows:

Battery Positive	#5	Yellow Wire	(Bat+)
Battery Negative	#1	Yellow Wire	(Bat-)
Start Signal	#23	Yellow Wire	(Start)

The connections in the automatic transfer switch will be made on a terminal block. This terminal block is located in the lower right hand corner on the back wall of the switch. The terminals are labeled BAT + (battery positive), BAT - (battery negative), and Start (start signal).

These control wires **MUST NOT** be run in the same conduit as the AC power leads coming from the generator or the 120 volt circuit for the block heater.

***** WARNING *****

EQUIPMENT DAMAGE - DC connections between Winco engine generators and other makes of Automatic Transfer Switches will vary. The Winco engine generator sets require a relay closure between Battery Negative (wire #1) and Start (wire #23) to operate. The Battery Positive is not used in other A.T.S. panels. Connecting Battery Positive in any switch other than a Winco can cause permanent damage to the engine control module

BLOCK HEATER WIRING

A 15 Amp fused power feed is necessary to complete the installation of the block heater installed on the engine. This circuit must be wired from an existing breaker box, fed by normal line power. **Do not run this circuit from the transfer switch wiring.** These wires should be run in their own conduit, i.e. not with the power leads or with the control leads.

The wiring for the block heater has been terminated in a 2" X 4" connection box located on the cross rail of the generator frame on the right hand side. Remove the top cover of this box and you will find a ground connection point along with two stub leads. The "hot" lead of the power circuit will be attached to the thermostat/switch mounted in the top cover of the box. The "neutral" lead will be attached to the other black lead in the connection box. Use the proper wire nuts to complete this installation.

The water immersion heater is mounted in the engine block. The thermostat will turn on the heater anytime the air temperature in the enclosure drops below 22 degrees. The thermostat will turn off the heater anytime the temperature rises above 32 degrees.

INITIAL START UP

***** WARNING *****

EQUIPMENT DAMAGE - DO NOT jump start these engine generator sets. Starting these units on a low battery or jump starting them will cause damage to the engine control module.

Use the following check list to verify correct installation before starting the engine:

- 1. Engine oil. Fill as required with proper grade/qty.
- 2. Engine coolant. Fill as required with proper mixture.
- 3. Unit mounting base properly bolted down.
- 4. Clearance for service and maintenance on all sides.
- 5. Proper fuel line material and size.
- 6. All fuel line connections tight.
- 7. Fuel line protected and a moisture trap installed (may be required for N.G.).
- 8. LP/NG pressure O.K. 4-6 Oz. (7-11" Wc).
- 9. Battery connections clean and tight.
- 10. Battery fully charged.
- 11. All A.C. and D.C. wiring installed and properly protected.

After completing the above checklist, the engine-generator set is ready for the initial start-up test.

PROCEDURE

Move the selector switch on the engine generator to the "RUN" position. The engine-generator will crank and start automatically. If the engine fails to start, return selector switch to the "stop" position and correct the trouble before proceeding.

With the engine running smoothly check the no load voltage and frequency at meters on the front panel. The voltage should be 240 A.C. and a frequency of 61.5 To 62 hertz (Hz). If you have the proper voltage at the generator the next step is to check the voltage at the generator terminals in the Automatic Transfer Switch. The voltage between the G1 and the G3 terminals should be the same as it was on the front panel. The voltage should also be checked between the hot terminals (G1 and G3) and the G-N to be certain of a balanced voltage output and a solid neutral connection. The voltage between G1 and G-N should be about one half of the line to line (G1 to G3) voltage or approximately 120 volts AC. The same approximate voltage should be found between terminals G3 and G-N (120 volts AC). On three phase panels the G2 voltage level should also be checked. ON 240 VOLT (DELTA) SYSTEMS BE SURE YOU KNOW WHERE THE HIGH VOLTAGE "WILD" LEG IS. IT MUST BE IN THE SAME LOCATION ON THE LINE SIDE AS IT IS ON THE GENERATOR SIDE. (i.e. if it's on L-3 on the line side it must be on G-3 on the generator side.

** Notice **

If for any reason during the check out procedure the voltage and frequency are not correct, turn the selector switch to the "STOP" position and correct the trouble before proceeding.

After verifying the that voltage and frequency are correct, turn the selector switch to the "STOP" position. The unit should shut off with no time delay. You are now ready to test the automatic start function.

Move the selector switch on the engine generator set to the "AUTO" position. Next move the selector switch on the A.T.S. panel to the "START" position. The unit will go into a 10 second start delay and then start up. If it fails to start at this time, the DC interconnection wiring is incorrect. Now when the selector switch on the A.T.S. is moved to the "DISABLE" position the unit will go into a 3 minute cool down and then shut off. As long as line power is still applied to the transfer switch during this test period the A.T.S. will not transfer the load to the generator.

Next you need to test the complete system. To accomplish this you will have to fail the incoming line power to the A.T.S. panel. First move both selector switches to the automatic position. Then fail the incoming power. All the loads connected to the A.T.S. should now be dead. The engine generator set will go into a 10 second start delay. At the end of the start delay the unit will start-up. As soon as the engine generator set reaches operating speed the generator side contactor will close and the load will be applied to the engine generator.

Restoring the line power will cause the generator side contactor in the A.T.S. to open and the line side to close as soon as the generator side is open. This sequence is controlled by the electrical and mechanical interlocks in between the two contactors in the A.T.S. panel. These interlocks ensure that you get a clean 'break before make' action in the transfer switch. The restoration of line power also sends a stop signal to the engine generator set. This stop signal will activate the 3 minute timer circuit and shutdown the unit 3 minutes later.

This completes your installation and unit testing. ALWAYS leave the system in standby mode unless servicing the unit. For standby operation, keep **both** the generator set and transfer selector switches in the "AUTOMATIC" position.

SETTING THE EXERCISER CLOCK

Setting the current time and date.

1. Position the top right hand (RUN) slide switch to the left position.

2. Push the clock's "Day Select Button" until the clock displays a triangle under the number corresponding to the current day of the week. (Monday is day 1, Sunday is day 7)

3. Push the "Hour Select Button" until the display indicates the correct time in hours. Note: In the afternoon you should push the button until a "P" is displayed beside the correct hour.

4. Push the "Minute Select Button" until the display indicates the correct time in minutes.

5. Position the top right hand (RUN) slide switch to the center position. The correct time and date should now be displayed.

Setting the Exerciser Program:

NOTE: The programs on this clock are grouped. i.e. 1 and 2, 3 and 4, etc. The start time is programed on the odd number and the stop time is programed on the even number in each program set.

1. Position the top right hand (RUN) slide switch to the right hand position.

2. Position the top left hand (AUTO) slide switch to the center postion.

3. Press the "Program Select Button" until No 1 is displayed on the clock to the right of the time.

4. Push the "Day Select Button" to select the day you want the engine generator set to start up and run. Note: You can get more than one triangle displayed on the clock. If this happens just keep pressing the button and it will work back through the cycle and display only one traingle under whichever day you desire.

5. With the "Hour" and "Minute" buttons select the time of day you want the engine to start up.

6. Press the "Program Select Button" until number 2 is displayed on the clock.

7. Push the "Day Select Button" to select the day you want the engine to stop. This must be the same day you selected in step 4 above.

8. With the "Hour" and "Minute" buttons, select the time you want the engine to stop. It is recommended you let the engine run at least 15 minutes during any exercise period.

9. Position the top right hand (RUN) slide switch to the center (RUN) position.

CLOCK NOTES:

This seven day exerciser clock has seven additional program cycles available. Always keep in mind the odd number turns the unit on and the even number shuts the unit off. (i.e. (3 on, 4 off) (5 on, 6 off) etc.

The relay in the clock will not work unless the transfer switch is installed and powered up. The clock relay needs 120 volts AC to operate.

If, when you finish programing the clock, you get an EEEE on the display, it stands for error. The most common error is that the day of operation has not been properly set at each step or a progam has been turned on and not turned off. i.e. programs not properly grouped 1& 2, 3 & 4, 5 & 6, etc.

On the face of the clock is a small button marked "R". This is a reset switch. Depressing this switch will remove all programing in the clock including the time, Use a small screwdriver or the tip of a pencil to depress this button. This should be used only as a last resort.

TROUBLESHOOTING TABLES

UNIT WILL NOT CRANK WHEN THE POWER FAILS.

- 1. Generator control switch not in "AUTOMATIC" position.
- 2. Transfer control switch not in "AUTOMATIC" position.
- 3. Incorrect wiring between transfer switch and generator.
- 4. Defective start stop relay in the transfer switch.
- 5. Circuit breaker tripped on engine control.
- 6. 3/4 amp fuse blown inside engine control.
- 7. Defective engine control module.
- 8. Loose or dirty battery terminals.
- 9. Defective "Run/Auto" switch on generator or transfer switch.
- 10. Defective starter.
- 11. Defective start solenoid.
- 12. Defective remote start solenoid.

ENGINE WILL NOT CRANK WITH GENERATOR SELECTOR SWITCH IN THE RUN POSITION.

- 1. Battery dead.
- 2. DC circuit breaker on control panel tripped.

- 3. 3/4 amp fuse blown inside control module.
- 4. Defective engine controller.
- 5. Circuit breaker tripped on engine control.
- 6. Loose or dirty battery terminals.
- 7. Defective "Run/Auto" switch on generator.
- 8. Defective starter.
- 9. Defective start solenoid.
- 10. Defective remote start solenoid.
- 11. Locked up engine genset.

ENGINE CRANKS BUT WILL NOT START

- 1. Improper fuel pressure being delivered to unit.
- 2. Fuel supply shut off.
- 3. Fuel tank empty.
- 4. Defective spark plug.
- 5. Defective engine ignition module.
- 6. Dirty air cleaner filter.
- 7. Defective fuel solenoid valve.

ENGINE STARTS AND THEN STOPS AND FAULT LIGHT COMES ON

- 1. Engine is low on oil.
- 2. Engine has high water temperature.
- 3. Engine has oversped.
- 4. Engine has gone into overcrank.
- 5. No output from engine alternator to engage stop crank circuit.

ENGINE WILL NOT COME UP TO SPEED AFTER IT STARTS

- Insufficent fuel volume getting to the unit.
 a. Too small of fuel line.
 - b. Fuel pressure too low/high.
- 2. Fuel load block needs to be adjusted.
- 3. Governor is out of adjustment.
- 4. AC short in generator components.

ATS PANEL WILL NOT TRANSFER TO EMERGENCY SUPPLY (GENERATOR)

- 1. No AC generator output from generator.
- 2. Broken or defective mechanical/electrical interlocks.
- 3. Defective holding coil in the generator side contactor.
- 4. Wiring error between generator and transfer switch.

ATS PANEL WILL NOT RETRANSFER TO NORMAL POWER

- 1. Proper normal line power not available at line terminals in ATS panel.
- 2. Defective holding coil in line side contactor.
- 3. Broken or defective mechanical/electrical interlocks.

NO AC OUTPUT FROM GENERATOR

- 1. Defective rectifier.
- 2. Defective surge suppressor.
- 3. Defective voltage regulator.
- 4. Defective rotor.
- 5. Defective stator.
- 6. Defective excitor rotor.
- 7. Defective excitor stator.
- 8. AC short in the output leads.
- 9. Defective field circuit breaker.

LP/NG FUEL ADJUSTMENTS

**** CAUTION ****

EQUIPMENT DAMAGE - Do not make any fuel adjustments or governor adjustments until all pressure readings are in compliance with specification. See fuel pressure charts (tables 1, 2, and 3).

NATURAL GAS (NG)

Due to variations in NG fuel characteristics and BTU levels throughout the country, it may be necessary to readjust the fuel mixture once the engine has been installed and serviced.

**** CAUTION ****

EQUIPMENT DAMAGE - Never make a fuel mixture adjustment on a unit when it is stopped or running no load. A mixture adjustment is only effective when the engine is operating under load.

Adjustment Procedure

1. Ensure the unit is operating under an 80 to 100% load or at the highest anticipated load.

2. Attach a frequency meter to monitor Hz.

Note: On these unit the mixture adjustment is located on the carburator just behind the fuel inlet hose. This mixture adjustment is a partial turn, lean to rich, load block.

3. Begin making a mixture adjustment, observing the Hz meter. If the meter begins to drop you have the mixture set too lean. Adjust the valve in the opposite direction. Adjustments should be made very slowly. Adjust back and forth until the highest Hz is achieved. Do not turn the valve richer after the Hz quits rising. This would cause the engine to run rich. If the Hz is out of upper or lower limits, a governor adjustment will be necessary.

4. See your engine manual for governor adjustment procedures.

**** CAUTION ****

EQUIPMENT DAMAGE - Under full load do not adjust the Hz above 60. If a higher Hz reading is used, as the load is decreased the Hz will go out of upper limits (61 to 62 Hz).

PROPANE (LP)

A generator set factory tested on LP will normally require no adjustment. If for some unforeseen reason the machine should require adjustment, follow the above procedure.

FUEL TYPE CONVERSION

If it should be necessary to change the type of fuel used after a unit is received, the following procedures are provided.

NOTE: For conversion to/from liquid withdrawal LP consult the factory. Additional parts will be required for this conversion.

NATURAL GAS TO PROPANE VAPOR

1. Turn off fuel supply.

2. Remove the fuel line from the carburetor at the demand regulator.

3. Remove the cap on the upright column of the regulator. This will expose the pressure spring adjusting screw. Back off the spring adjusting screw so there is just enough room to replace the cover. Replace the cover.

4. Invert the regulator so it is positioned with the column pointing down.

5. Reconnect the fuel line at the regulator.

6. Remove the 1/8 NPT plug (the one closest to fuel solenoid) located on what is now the top of the regulator. Connect a fuel pressure meter or a monometer where the plug has been removed. Move the generator control switch to the run position. As the unit starts to crank the fuel solenoid will open and you should get a pressure reading of between 4 to 6 ounces (7 to 11 inches of water column).

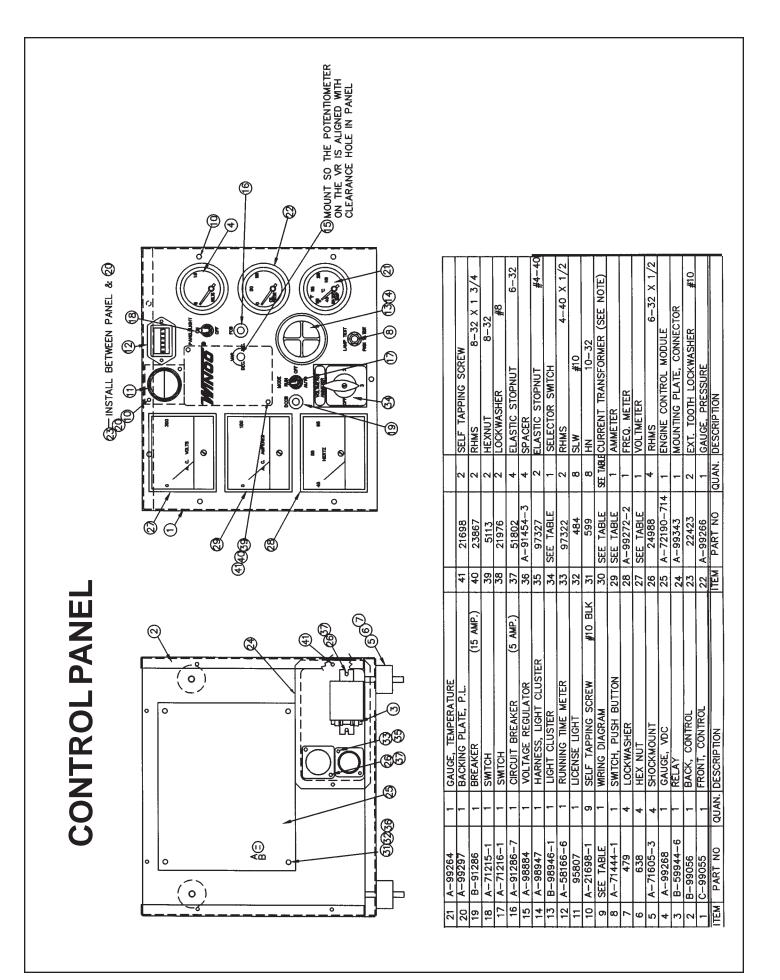
7. If the pressure is correct, remove the meter and reinstall the pipe plug.

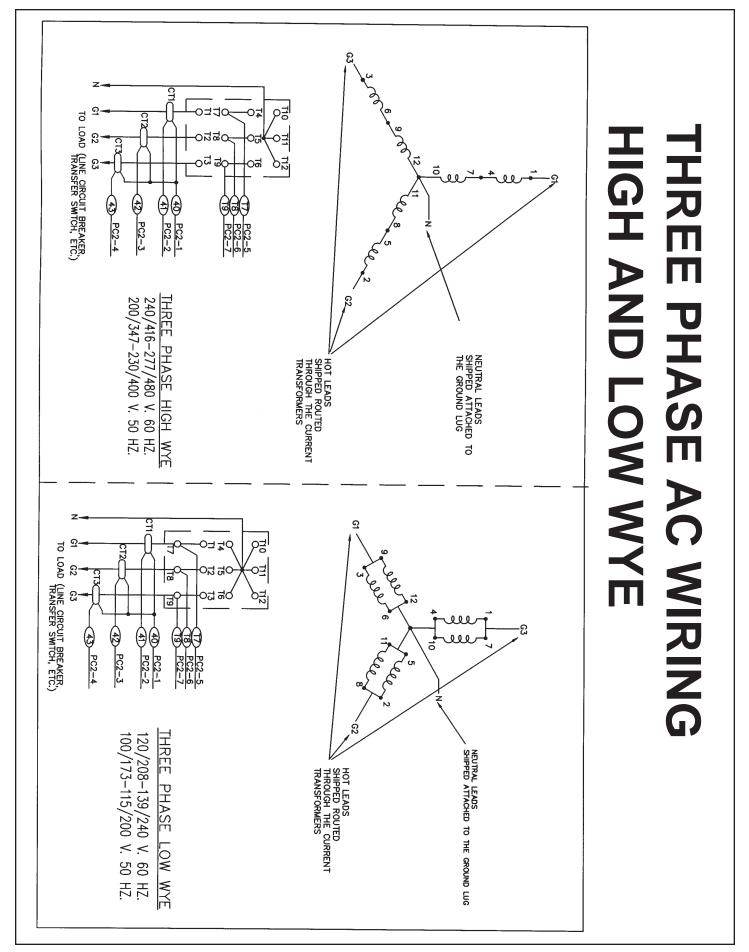
8. You are now ready to make the final fuel mixture adjustment. Refer to adjustment section in this manual.

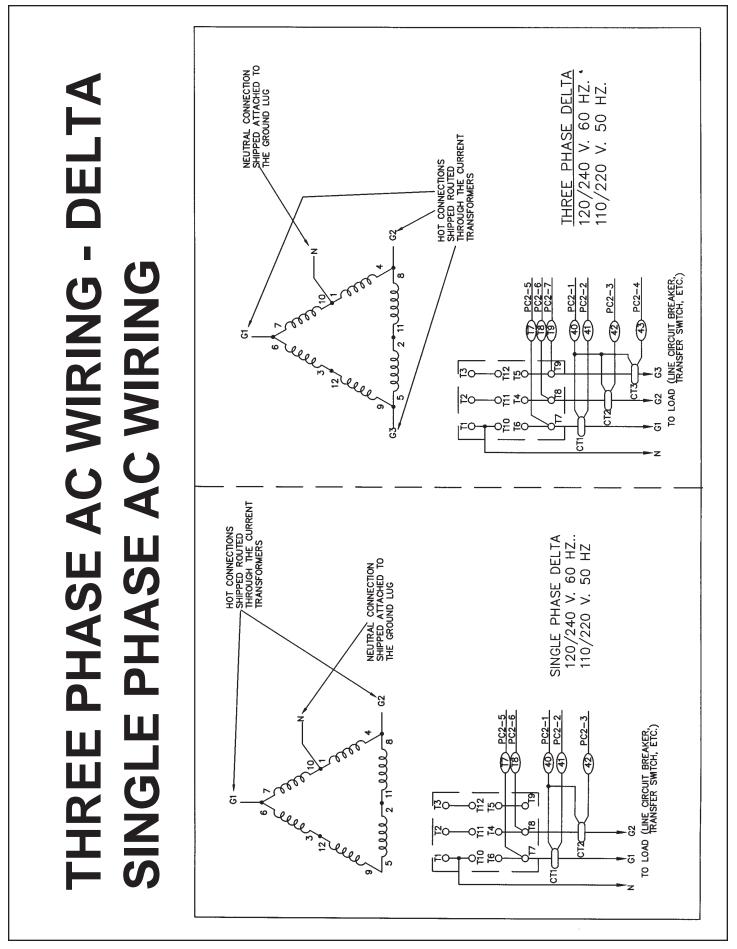
PROPANE VAPOR TO NATURAL GAS

1. Turn off fuel supply.

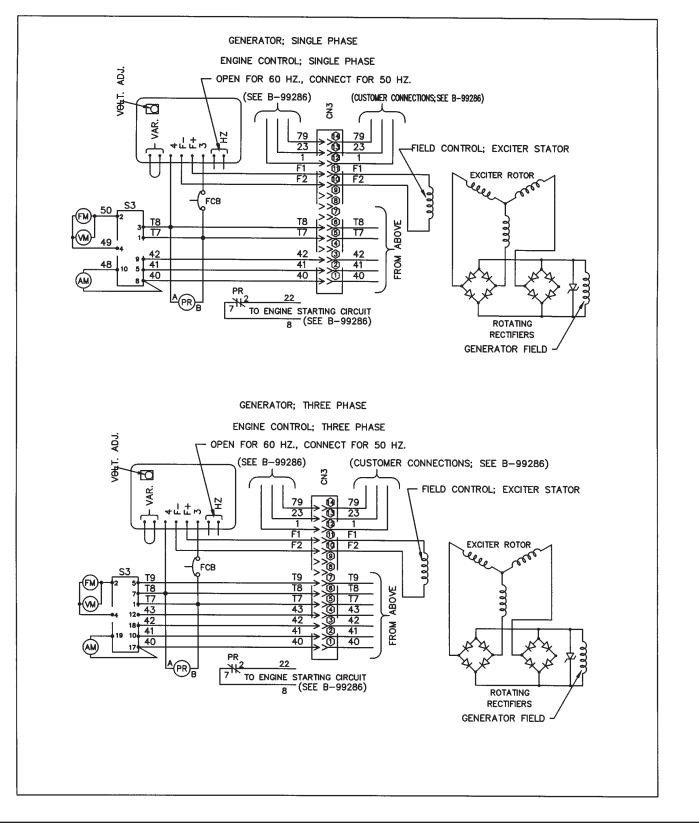
2. Remove the fuel line from the carburetor at the demand regulator.

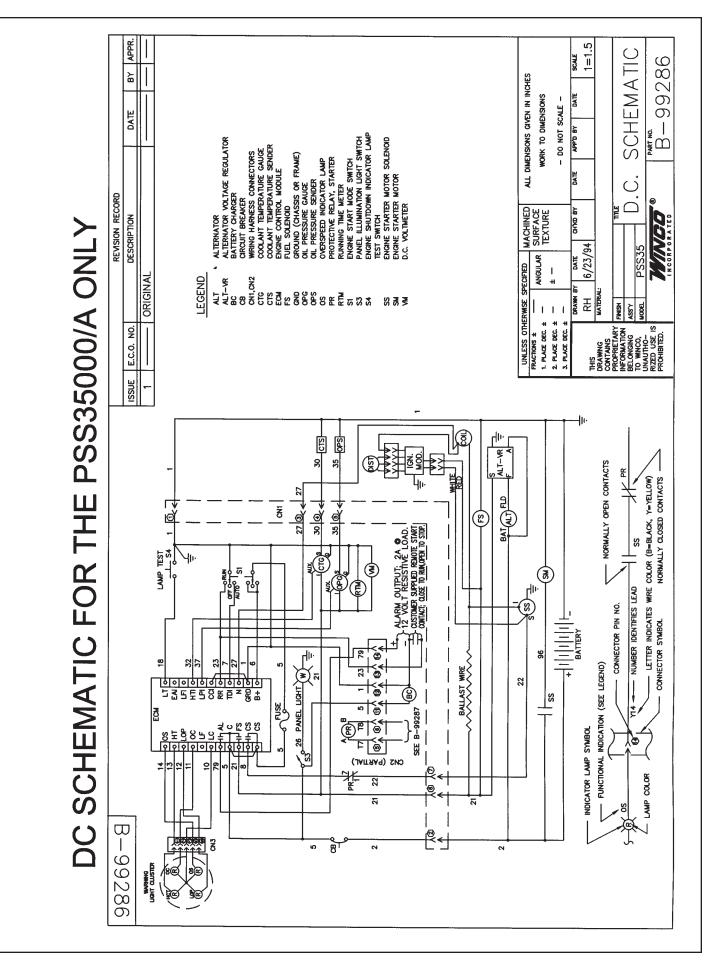

3. Invert the regulator so the column is in the upright position. Remove the cap on the upright column of the regulator. This will expose the pressure spring adjusting screw. Turn the screw all the way out (CCW) and then back in (CW) about 8 turns. The plug should be approximately half way down for initial starting.

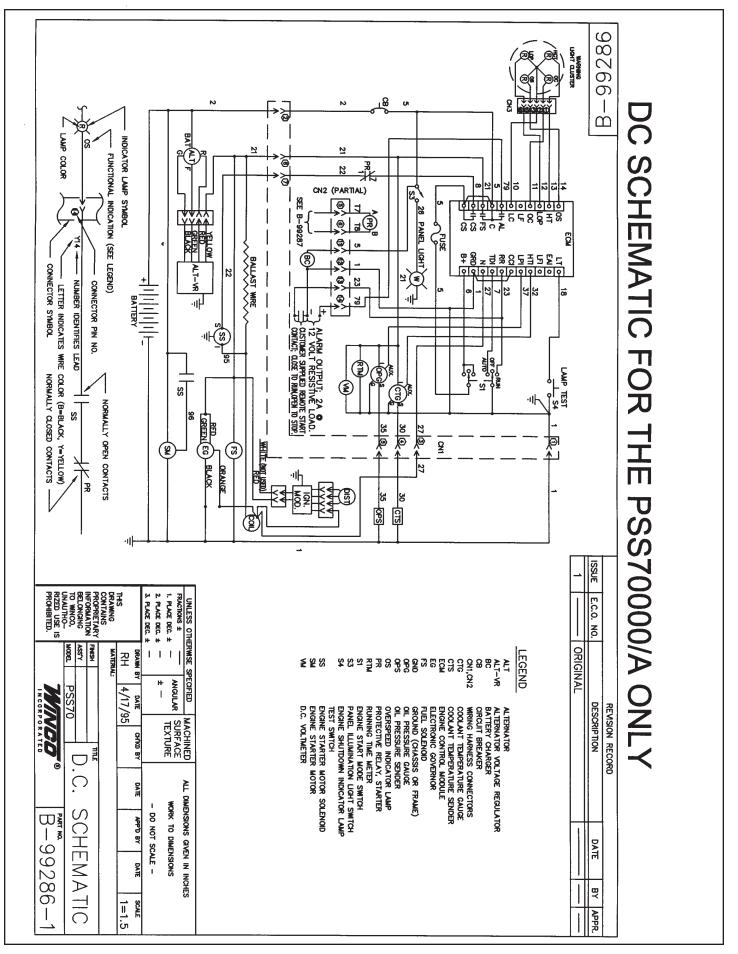

5. Reconnect the fuel line at the regulator.

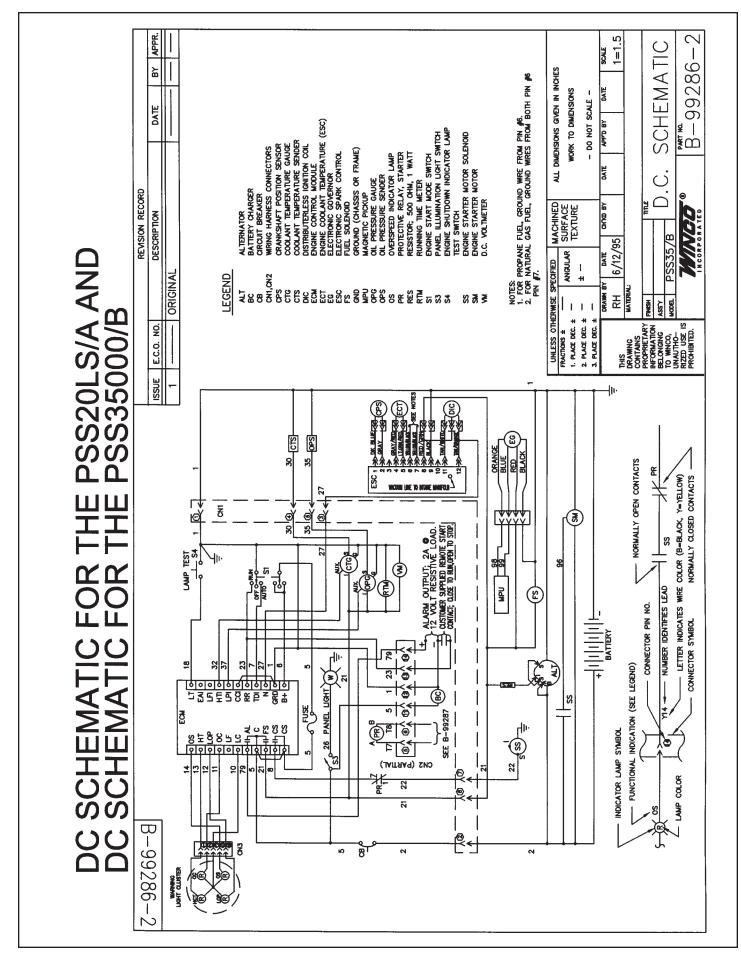

6. Remove the 1/8 NPT plug (the one closest to fuel solenoid) located on what is now the bottom of the regulator. Connect a fuel pressure meter or a monometer where the plug has been removed. Move the generator control switch to the "run" position. As the unit starts to crank the fuel solenoid will open and you should get a pressure reading of between 4 to 6 ounces (7 to 11 inches of water column).

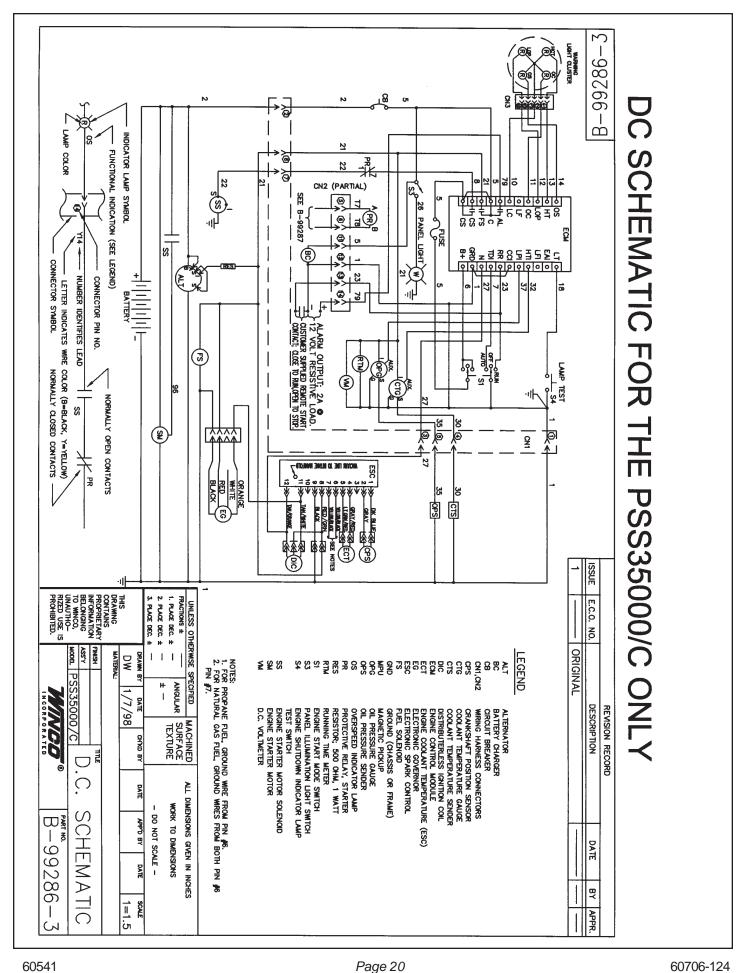
7. If the pressure is correct, remove the meter and reinstall the pipe plug. Next remove the 1/8 inch NPT plug on the carburetor side of the regulator and install the pressure meter. Move the generator switch to the run position. As soon as the solenoid opens the pressure should rise to 2.5 to 3 oz. just as the engine starts to crank. If it is within this range replace the cap on the column. If not, adjust the screw down to increase and up to decrease and retest.

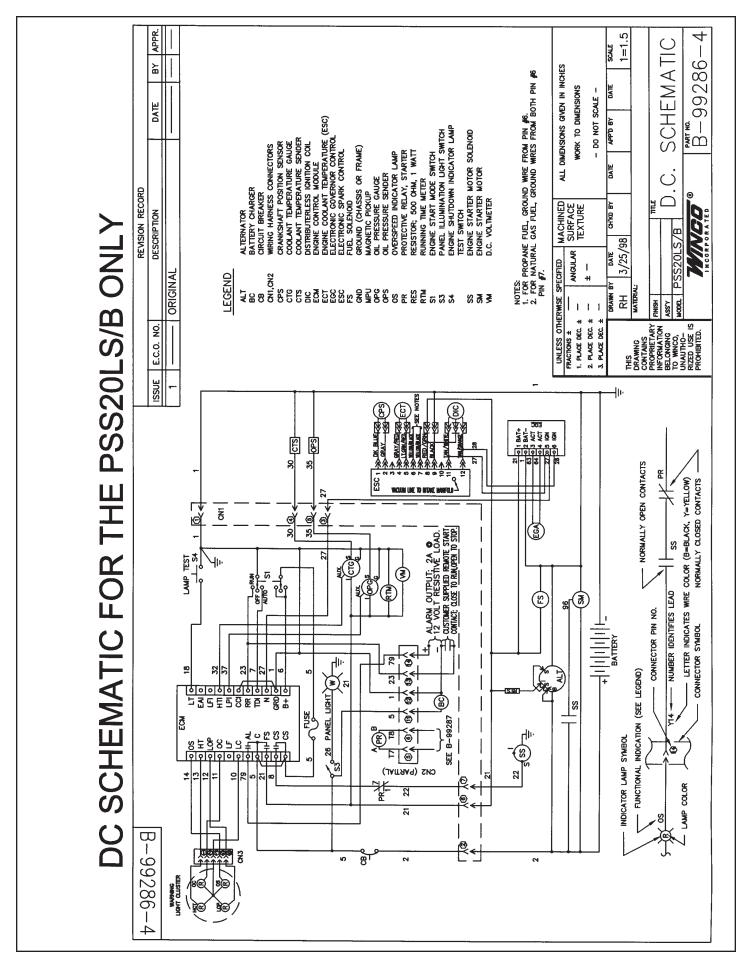

8. You are now ready to make the final fuel mixture adjustment. Refer to adjustment section in this manual.

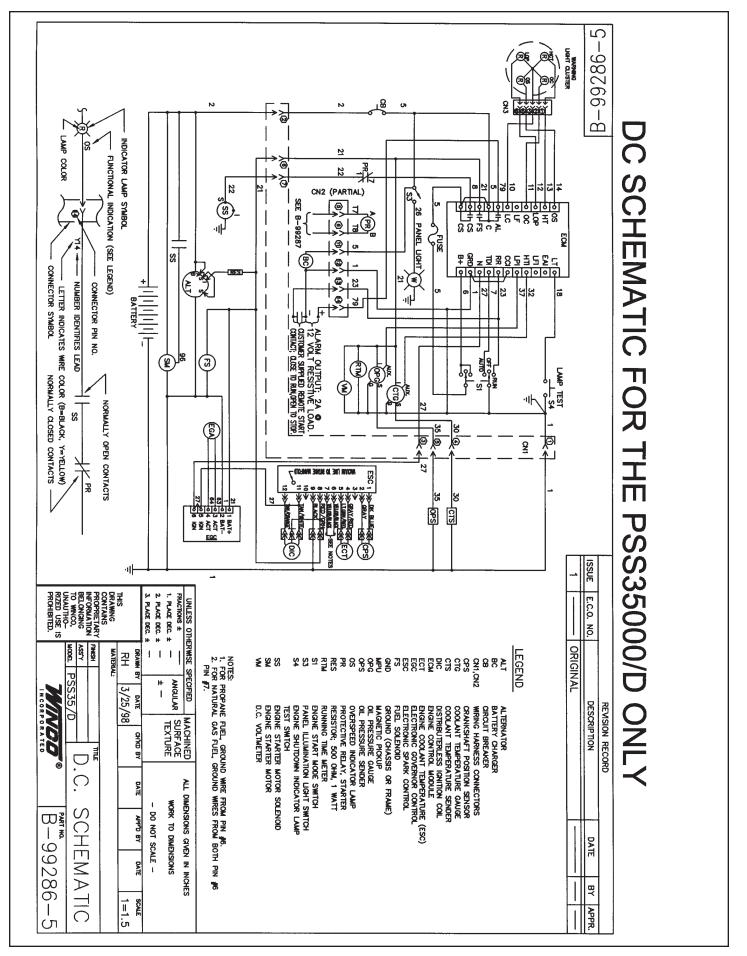







VOLTAGE REGULATOR WIRING THREE PHASE AND SINGLE PHASE





12 MONTH LIMITED WARRANTY

WINCO, Incorporated warrants to the original purchaser for 12 months that goods manufactured or supplied by it will be free from defects in workmanship and material, provided such goods are installed, operated and maintained in accordance with Winco written instructions.

WINCO's sole liability, and Purchaser's sole remedy for a failure under this warranty, shall be limited to the repair of the product. At WINCO's option, material found to be defective in material or workmanship under normal use and service will be repaired or replaced. For warranty service, return the product within 12 months from the date of purchase, transportation charges prepaid, to your nearest WINCO Authorized Service Center or to WINCO, Inc. at Le Center Minnesota.

THERE IS NO OTHER EXPRESS WARRANTY.

To the extent permitted by law, any and all warranties, including those of merchantability and fitness for a particular purpose, are limited to 12 months from date of purchase. In no event is WINCO liable for incidental or consequential damages.

Note: Some states do not allow limitation on the duration of implied warranty and some states do not allow the exclusion or limitation of incidental or consequential damages, so the above limitations may not apply in every instance. This warranty gives you specific legal rights which may vary from state to state.

WINCO reserves the right to change or improve its products without incurring any obligations to make such changes or improvement on products purchased previously.

EXCLUSIONS:

WINCO does not warrant engines, batteries, or other component parts that are warranted by their respective manufacturers.

WINCO does not warrant modifications or alterations which were not made by WINCO, Inc.

WINCO does not warrant products which have been subjected to misuse and/or negligence or *have* been involved in an accident.